Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (7): 2182-2196.doi: 10.12382/bgxb.2023.0404
Previous Articles Next Articles
Received:
2023-05-09
Online:
2023-07-24
Contact:
YU Jianqiao
CLC Number:
ZHAO Xinyun, YU Jianqiao. Dynamic Modeling and Attitude Control for Novel Agile Projectile[J]. Acta Armamentarii, 2024, 45(7): 2182-2196.
Add to citation manager EndNote|Ris|BibTeX
传统、新型与 效果 | tsim/ s | EuR/ (N·s) | EuT/ (N·s) | Etotal/ (N·s) |
---|---|---|---|---|
传统 | 2.31 | 3732.78 | 40567.50 | 44300.28 |
新型 | 2.00 | 13440.31 | 24952.50 | 38392.81 |
效果 | -13.27% | 260.06% | -38.49% | -13.34% |
Table 1 Time and energy consumption
传统、新型与 效果 | tsim/ s | EuR/ (N·s) | EuT/ (N·s) | Etotal/ (N·s) |
---|---|---|---|---|
传统 | 2.31 | 3732.78 | 40567.50 | 44300.28 |
新型 | 2.00 | 13440.31 | 24952.50 | 38392.81 |
效果 | -13.27% | 260.06% | -38.49% | -13.34% |
参数 | 数值 |
---|---|
质量/kg | 102.1573 |
转动惯量/(kg·m2) | 69.1467 |
特征长度/m | 0.1270 |
特征面积/m2 | 0.0127 |
Table B1 Structural parameters of projectiles
参数 | 数值 |
---|---|
质量/kg | 102.1573 |
转动惯量/(kg·m2) | 69.1467 |
特征长度/m | 0.1270 |
特征面积/m2 | 0.0127 |
攻角/(°) | Ma | Cnα | Cnδ | Cmα | Cmδ |
---|---|---|---|---|---|
0.3 | 16.094 | 12.307 | -48.106 | -123.266 | |
10 | 0.6 | 13.212 | 12.485 | -46.822 | -124.985 |
0.8 | 10.875 | 12.124 | -44.777 | -121.278 | |
2.0 | 10.015 | 6.520 | -10.279 | -67.076 | |
0.3 | 6.578 | 5.690 | -68.927 | -56.992 | |
40 | 0.6 | 44.112 | 6.452 | -103.362 | -64.570 |
0.8 | 52.443 | 6.976 | -104.679 | -69.683 | |
2.0 | 31.581 | 4.864 | -58.786 | -50.008 | |
0.3 | 10.796 | 0 | 0 | 0 | |
80 | 0.6 | 11.156 | 0 | 0 | 0 |
0.8 | 11.529 | 0 | 0 | 0 | |
2.0 | 0 | 0 | 0 | 0 |
Table B2 Aerodynamic coefficients of projectiles
攻角/(°) | Ma | Cnα | Cnδ | Cmα | Cmδ |
---|---|---|---|---|---|
0.3 | 16.094 | 12.307 | -48.106 | -123.266 | |
10 | 0.6 | 13.212 | 12.485 | -46.822 | -124.985 |
0.8 | 10.875 | 12.124 | -44.777 | -121.278 | |
2.0 | 10.015 | 6.520 | -10.279 | -67.076 | |
0.3 | 6.578 | 5.690 | -68.927 | -56.992 | |
40 | 0.6 | 44.112 | 6.452 | -103.362 | -64.570 |
0.8 | 52.443 | 6.976 | -104.679 | -69.683 | |
2.0 | 31.581 | 4.864 | -58.786 | -50.008 | |
0.3 | 10.796 | 0 | 0 | 0 | |
80 | 0.6 | 11.156 | 0 | 0 | 0 |
0.8 | 11.529 | 0 | 0 | 0 | |
2.0 | 0 | 0 | 0 | 0 |
伞的攻角/(°) | Ma | CN | CT | Cmp |
---|---|---|---|---|
10 | 0.2 | 0.080 | 0.550 | -0.018 |
0.6 | 0.084 | 0.627 | -0.020 | |
20 | 0.2 | 0.150 | 0.480 | -0.027 |
0.6 | 0.179 | 0.592 | -0.031 | |
30 | 0.2 | 0.280 | 0.400 | -0.035 |
0.6 | 0.340 | 0.482 | -0.042 | |
40 | 0.2 | 0.400 | 0.280 | -0.043 |
0.6 | 0.510 | 0.335 | -0.050 |
Table B3 Aerodynamic coefficients of parachute
伞的攻角/(°) | Ma | CN | CT | Cmp |
---|---|---|---|---|
10 | 0.2 | 0.080 | 0.550 | -0.018 |
0.6 | 0.084 | 0.627 | -0.020 | |
20 | 0.2 | 0.150 | 0.480 | -0.027 |
0.6 | 0.179 | 0.592 | -0.031 | |
30 | 0.2 | 0.280 | 0.400 | -0.035 |
0.6 | 0.340 | 0.482 | -0.042 | |
40 | 0.2 | 0.400 | 0.280 | -0.043 |
0.6 | 0.510 | 0.335 | -0.050 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
刘祥, 李爱军, 郭永, 等. 固定时间收敛的空空导弹直接力/气动力复合控制[J]. 哈尔滨工业大学学报, 2019, 51(9):29-34,42.
|
|
|
[6] |
|
[7] |
|
[8] |
|
[9] |
霍鑫, 彭继平, 马克茂, 等. 空空导弹敏捷转弯的分段线性滑模控制设计[J]. 系统工程与电子技术, 2017, 39(10):2278-2284.
|
doi: 10.3969/j.issn.1001-506X.2017.10.18 |
|
[10] |
马悦悦, 唐胜景, 郭杰. 基于改进Terminal滑模的导弹大角度机动控制[J]. 北京航空航天大学学报, 2016, 42(3):472-480.
|
|
|
[11] |
李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023, 44(8):208-221.
|
|
|
[12] |
赵新运, 于剑桥. 导弹敏捷转弯段的新型非奇异终端滑模控制[J]. 宇航学报, 2022, 43(4):454-464.
|
|
|
[13] |
李健, 房冠辉, 吕智慧, 等. 天问一号火星探测器伞系减速分系统设计与验证[J]. 中国科学:技术科学, 2022, 52(2):264-277.
|
|
|
[14] |
董捷, 饶炜, 孙泽洲, 等. 火星伞降段多体动力学特性分析与安全设计研究[J]. 中国科学:技术科学, 2022, 52(8):1175-1185.
|
|
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
韩晋阳, 白春华, 檀盼龙. 伞降战斗部毁伤试验落点预测方法研究[J]. 兵工学报, 2020, 41(6):1077-1084.
doi: 10.3969/j.issn.1000-1093.2020.06.004 |
doi: 10.3969/j.issn.1000-1093.2020.06.004 |
|
[20] |
|
[21] |
|
[22] |
王睿, 周洲, 郭荣化, 等. 太阳能无人机伞降着陆多体动力学仿真与试验[J]. 航空学报, 2022, 43(8): 456-468.
|
|
|
[23] |
|
[24] |
吴翰, 王正平, 周洲, 等. 无人机伞降回收十二自由度模型建立与仿真[J]. 西北工业大学学报, 2020, 38(1): 68-74.
|
|
|
[25] |
|
[26] |
唐乾刚, 张青斌, 张晓今, 等. 伞-弹系统九自由度动力学模型[J]. 兵工学报, 2007, 28(4):449-452.
|
|
|
[27] |
唐乾刚, 王昱, 张青斌, 等. 伞-弹动力学及运动学在末敏弹目标识别中的应用[J]. 兵工学报, 2007, 28(7): 796-799.
|
|
|
[28] |
|
[29] |
王立武, 高庆玉, 许望晶, 等. 嫦娥五号返回器降落伞回收动力学建模与分析[J]. 宇航学报, 2021, 42(8):1051-1056.
|
|
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
周文雅, 马瑞鑫, 胡欣涵, 等. 圆形降落伞下降轨迹控制研究[J]. 兵器装备工程学报, 2021, 42(1):26-30.
|
|
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2000.
|
|
|
[42] |
张良总, 杨涛, 吴云, 等. 基于图像测量的Stewart平台双阶控制技术[J]. 光电工程, 2022, 49(8):75-84.
|
|
|
[43] |
吴燕生. 中国运载火箭姿态控制技术发展与展望[J]. 宇航学报, 2023, 44(4):509-518.
|
|
|
[44] |
张科, 陈之光, 赵玉印. 国外高速导弹的头罩防护技术[J]. 红外与激光工程, 2013, 42(1):154-158.
|
|
|
[45] |
|
[46] |
|
[47] |
梅红, 王勇. 快速收敛的机器人滑模变结构控制[J]. 信息与控制, 2009, 38(5):552-557.
|
|
|
[48] |
韩京清. 一类不确定对象的扩张状态观测器[J]. 控制与决策, 1995, 10(1):85-88.
|
|
|
[49] |
|
[50] |
doi: 10.1016/j.isatra.2015.07.012 pmid: 26275404 |
[1] | LIN Zhonglin, WANG Haitao, LIU Wenchao, GAN Jinyu, ZHANG Tianhong, HUANG Feng. Aero-engine Compressor Pressure Simulation Method Based on Multi-mode Acceleration and Backstepping Sliding Mode [J]. Acta Armamentarii, 2024, 45(6): 1776-1786. |
[2] | YIN Qiulin, CHEN Qi, WANG Zhongyuan, WANG Qinghai. Rapid Trajectory Planning for Glide-guided Projectiles in Single-gun Multi-shot Scenarios Considering Time-spatial Coordination [J]. Acta Armamentarii, 2024, 45(3): 798-809. |
[3] | ZHANG Tianyi, ZHENG Ying, QIU Xinguo, JI Xingjian, JIN Xiaohang. Disturbance Compensation Strategy for Fifth-order Joint Servomechanism Based on Characteristic Model [J]. Acta Armamentarii, 2024, 45(1): 276-287. |
[4] | DING Wengjun, ZHANG Guozong, LIU Haimin, CHAI Yajun, WANG Chiyu, MAO Zhaoyong. Tracking Control of Underactuated Autonomous Underwater Vehicle Formation under Current Disturbance and Communication Delay [J]. Acta Armamentarii, 2024, 45(1): 184-196. |
[5] | XU Peng, XING Boyang, LIU Yufei, LI Yongyao, ZENG Yi, ZHENG Dongdong. Anti-disturbance Composite Controller Design of Quadruped Robot Based on Extended State Observer and Model Predictive Control Technique [J]. Acta Armamentarii, 2023, 44(S2): 12-21. |
[6] | WANG Zhilin, WANG Jiang, QI Qi, FAN Shipeng. Novel Adaptive Robust Roll Control Method Based on LESO [J]. Acta Armamentarii, 2023, 44(7): 1920-1929. |
[7] | GAO Yuxuan, HOU Yuanlong, GAO Qiang, HOU Runmin. Compound Control Method of ADRC and FNTSM for Airborne Object Tracking System [J]. Acta Armamentarii, 2023, 44(4): 1071-1085. |
[8] | GAO Qiang, HOU Yuanlong, LÜ Mingming, MAO Bin, HOU Runmin, YANG Shuyi, WU Bin. A Marching Stable Control Method for a New Vehicle-Mounted Multi-Tube Load [J]. Acta Armamentarii, 2023, 44(3): 736-747. |
[9] | DONG Jinlu, MA Yuemeng, ZHOU Di, GONG Xiaogang, ZHANG Xi, SONG Jiahong. A Composite Sliding Mode Control Scheme Based on Reaction Jets and Flaps for Near-Space Hypersonic Vehicles [J]. Acta Armamentarii, 2023, 44(2): 496-506. |
[10] | YOU Hao, CHANG Xinlong, ZHAO Jiufen, ZHANG Youhong, WANG Shunhong. Three-dimensional Leader-follower Cooperative Guidance Law with Impact Angle Constraints [J]. Acta Armamentarii, 2023, 44(11): 3369-3381. |
[11] | ZHAO Xinxin, SHI Jinguang, WANG Zhongyuan, ZHANG Ning. Nonlinear Angular Motionand Bifurcation Characteristics of Canard Dual-Spin Projectiles [J]. Acta Armamentarii, 2023, 44(10): 3067-3078. |
[12] | WANG Shushan, ZHAO Chuan, SUN Yuhui, LIU Dongqi, ZHANG Xuejun, WANG Guangzhi. Principle and Method of Enhancing Grenade Power by Changing the Steel Material [J]. Acta Armamentarii, 2022, 43(9): 2291-2299. |
[13] | TIAN Ze, WANG Hao, WU Haijun, DENG Ximin, PI Aiguo, LI Jinzhu, HUANG Fenglei. Attitude Deflection Mechanism of Projectiles with Variable Elliptical Cross-sections Obliquely Perforating Thin Targets [J]. Acta Armamentarii, 2022, 43(7): 1537-1552. |
[14] | ZENG Qing-han, MA Xiao-jun, LIAO Zi-li, WEI Shu-guang. Stable Steer Control of Electric Drive Tracked Vehicle Based on Equivalent Sliding Mode Technique with Conditional Integrator [J]. Acta Armamentarii, 2016, 37(8): 1351-1358. |
[15] | CHEN Chen, MA Guang-fu, SUN Yan-chao, LI Chuan-jiang. Recursive Sliding Mode Control for Hypersonic Vehicle Based on Nonlinear Disturbance Observer [J]. Acta Armamentarii, 2016, 37(5): 840-850. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||