Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (6): 240401-.doi: 10.12382/bgxb.2024.0401
• Special Topics of Academic Papers at the 27th Annual Meeting of the China Association for Science and technology • Previous Articles Next Articles
YAN Ming1, WANG Xinjie1,2,*(), HUANG Fenglei1,2,**(
), YOU Sa1
Received:
2024-05-22
Online:
2025-06-28
Contact:
WANG Xinjie, HUANG Fenglei
CLC Number:
YAN Ming, WANG Xinjie, HUANG Fenglei, YOU Sa. Thermal-ignition Response of Warhead Charge and Characteristics of Typical Thermal Protection Structure under Hypersonic Aerodynamic Heating[J]. Acta Armamentarii, 2025, 46(6): 240401-.
Add to citation manager EndNote|Ris|BibTeX
边界层第1层 法向网格高度/ mm | 边界层网 格增长率 | 边界层网 格层数 | 全域网格 总数/万 | 计算时 长/h | y+ |
---|---|---|---|---|---|
0.1 | 1.3 | 14 | 281 | 24 | 48.00 |
0.05 | 16 | 487 | 48 | 8.94 | |
0.01 | 22 | 553 | 52 | 1.09 | |
0.005 | 25 | 666 | 64 | 0.50 |
Table 1 Grid independence of boundary layer
边界层第1层 法向网格高度/ mm | 边界层网 格增长率 | 边界层网 格层数 | 全域网格 总数/万 | 计算时 长/h | y+ |
---|---|---|---|---|---|
0.1 | 1.3 | 14 | 281 | 24 | 48.00 |
0.05 | 16 | 487 | 48 | 8.94 | |
0.01 | 22 | 553 | 52 | 1.09 | |
0.005 | 25 | 666 | 64 | 0.50 |
参数 | 量热完全空气数值 | 热完全空气数值[ |
---|---|---|
r/(kg·m-3) | 理想气体 | 理想气体 |
Cp/(J·kg-1·K-1) | 1006.43 | Nasa-9 |
λ/(W·m-1·K-1) | 0.0242 | 欧肯关系 |
μ/(kg·m-1·s-1) | 1.7894×10-5 | 布洛特内曲线 |
Table 2 Physical parameters of fluid zone
参数 | 量热完全空气数值 | 热完全空气数值[ |
---|---|---|
r/(kg·m-3) | 理想气体 | 理想气体 |
Cp/(J·kg-1·K-1) | 1006.43 | Nasa-9 |
λ/(W·m-1·K-1) | 0.0242 | 欧肯关系 |
μ/(kg·m-1·s-1) | 1.7894×10-5 | 布洛特内曲线 |
No. | 材料 | Z/s-1 | E/(J·mol-1) | Q/(J·kg-1) | ΔSf/(J·mol-1·K-1) | Ef/(J·mol-1) | ΔSr/(J·mol-1·K-1) |
---|---|---|---|---|---|---|---|
1 | DNAN | 1.2×1011 | 1.72×105 | 4.92×106 | |||
2 | HMX | 1.89×105 | -2.5×104 | 123.00 | 2.04×105 | 89 | |
3 | HMX | 8.65×104 | -2.5×104 | -40.37 | 1.02×105 | -75.2 | |
4 | HMX | 3.16×1016 | -1.2×105 | 2.0×105 | |||
5 | HMX | 2.00×1015 | 3.2×106 | 1.731×105 | |||
6 | NTO | 9.93×1017 | 2.72×105 | 5.87×106 | |||
7 | Binder | 1.1×1012 | 1.675×105 | 6.005×105 |
Table 3 Reaction kinetic parameters[21]
No. | 材料 | Z/s-1 | E/(J·mol-1) | Q/(J·kg-1) | ΔSf/(J·mol-1·K-1) | Ef/(J·mol-1) | ΔSr/(J·mol-1·K-1) |
---|---|---|---|---|---|---|---|
1 | DNAN | 1.2×1011 | 1.72×105 | 4.92×106 | |||
2 | HMX | 1.89×105 | -2.5×104 | 123.00 | 2.04×105 | 89 | |
3 | HMX | 8.65×104 | -2.5×104 | -40.37 | 1.02×105 | -75.2 | |
4 | HMX | 3.16×1016 | -1.2×105 | 2.0×105 | |||
5 | HMX | 2.00×1015 | 3.2×106 | 1.731×105 | |||
6 | NTO | 9.93×1017 | 2.72×105 | 5.87×106 | |||
7 | Binder | 1.1×1012 | 1.675×105 | 6.005×105 |
材料 | ρ/(kg·m-3) | Cp/(J·kg-1·K-1) | λ/(W·m-1·K-1) | L/(J·kg-1) | Ts/K | Te/K |
---|---|---|---|---|---|---|
DNAN(solid) | 1450 | 315.3+2.65T | 0.25 | 175000 | 370 | |
DNAN(liquid) | 1330 | 1250 | 0.17 | 375 | ||
HMX | 1850 | 92.93+3.305T | 0.4368-0.000444T | |||
NTO | 1850 | 1088 | 0.27 | |||
Binder | 2020 | 1000.43 | 0.0527 | |||
Al | 2719 | 871 | 1.39 |
Table 4 Physical property parameters of charge[21]
材料 | ρ/(kg·m-3) | Cp/(J·kg-1·K-1) | λ/(W·m-1·K-1) | L/(J·kg-1) | Ts/K | Te/K |
---|---|---|---|---|---|---|
DNAN(solid) | 1450 | 315.3+2.65T | 0.25 | 175000 | 370 | |
DNAN(liquid) | 1330 | 1250 | 0.17 | 375 | ||
HMX | 1850 | 92.93+3.305T | 0.4368-0.000444T | |||
NTO | 1850 | 1088 | 0.27 | |||
Binder | 2020 | 1000.43 | 0.0527 | |||
Al | 2719 | 871 | 1.39 |
材料 | r/(kg·m-3) | Cp/(J·kg-1·K-1) | λ/(W·m-1·K-1) |
---|---|---|---|
超高温陶 瓷[ | 5330 | Cp1 | λ1 |
气凝胶[ | 220 | 800 | 0.0232(293K), 0.0252(1073K), 0.0317(1273K) |
Table 5 Physical parameters of insulation zone
材料 | r/(kg·m-3) | Cp/(J·kg-1·K-1) | λ/(W·m-1·K-1) |
---|---|---|---|
超高温陶 瓷[ | 5330 | Cp1 | λ1 |
气凝胶[ | 220 | 800 | 0.0232(293K), 0.0252(1073K), 0.0317(1273K) |
马赫数 | 有无热防护层 | 超高温陶瓷 | 气凝胶 | 外壳 | 装药 |
---|---|---|---|---|---|
5 | 有 | 1015.22 | 991.817 | 311.07 | 303.45 |
无 | 1032.89 | 705.98 | |||
6 | 有 | 1442.50 | 1412.51 | 318.41 | 305.61 |
无 | 1446.58 | 994.48 | |||
7 | 有 | 1962.09 | 1950.02 | 329.56 | 309.18 |
无 | 1908.76 | 1350.52 | |||
8 | 有 | 2643.60 | 2635.01 | 342.39 | 313.62 |
无 | 2424.84 | 1783.84 |
Table 6 Maximum temperature at each region of warhead with or without heat insulation under different Mach numbers K
马赫数 | 有无热防护层 | 超高温陶瓷 | 气凝胶 | 外壳 | 装药 |
---|---|---|---|---|---|
5 | 有 | 1015.22 | 991.817 | 311.07 | 303.45 |
无 | 1032.89 | 705.98 | |||
6 | 有 | 1442.50 | 1412.51 | 318.41 | 305.61 |
无 | 1446.58 | 994.48 | |||
7 | 有 | 1962.09 | 1950.02 | 329.56 | 309.18 |
无 | 1908.76 | 1350.52 | |||
8 | 有 | 2643.60 | 2635.01 | 342.39 | 313.62 |
无 | 2424.84 | 1783.84 |
[1] |
董恒, 黄风雷, 武海军, 等. 异形弹体高速侵彻/穿甲机理研究进展[J]. 兵工学报, 2024, 45(9):2863-3887.
|
|
|
[2] |
崔玉红, 徐艺哲, 吕凡熹, 等. 临近空间高超声速飞行器武器投放影响因素[J]. 航空学报, 2023, 44(24):128539.
|
|
|
[3] |
彭子昂, 于勇, 周玲, 等. 攻角对翼身组合体边界层转捩及气动热影响的数值研究[J]. 航空动力学报, 2025, 40(6):20230801.
|
|
|
[4] |
|
[5] |
徐俊杰. 气动加热对装药质量及侵彻安定性影响的数值模拟研究[D]. 太原: 中北大学, 2021.
|
|
|
[6] |
刘增达. 基于气动加热的超音速战斗部装药侵彻安定性分析[D]. 太原: 中北大学, 2021.
|
|
|
[7] |
黄鑫, 浦健, 王建华, 等. 曲面对层板/热障涂层耦合结构冷却特性的影响[J]. 工程热物理学报, 2023, 44(7):1800-1807.
|
|
|
[8] |
|
[9] |
曾宇, 汪洪波, 孙明波, 等. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9):027411.
|
|
|
[10] |
陈文. 高速侵彻条件下战斗部装药安全性研究[D]. 北京: 北京理工大学, 2009.
|
|
|
[11] |
|
[12] |
|
[13] |
李鹏, 陈坚强, 丁明松, 等. LENS风洞试验返回器模型气动热特性模拟[J]. 航空学报, 2021, 42(增刊1):726400.
|
|
|
[14] |
|
[15] |
王源杰. 考虑多振动温度模型的高温气体效应数值模拟研究[D]. 长沙: 国防科学技术大学, 2016.
|
|
|
[16] |
|
[17] |
白孟璟, 段卓平, 白志玲, 等. 内/外隔热复合结构炸药装药快速烤燃热防护效应[J]. 兵工学报, 2024, 45(5):1555-1563.
|
|
|
[18] |
肖有才, 王瑞胜, 范晨阳, 等. 带壳JH-14C传爆药烤燃实验及响应特性数值模拟[J]. 爆炸与冲击, 2023, 43(7):40-51.
|
|
|
[19] |
刘瑞峰, 王昕捷, 黄风雷, 等. 2,4-二硝基苯甲醚基熔铸炸药宏细观烤燃响应特性数值分析[J]. 兵工学报, 2022, 43(2):287-296.
|
|
|
[20] |
寇永锋, 杨坤, 张斌, 等. 基于烤燃实验和数值模拟的战斗部装药热安全性[J]. 兵工学报, 2023, 44(增刊1):41-49.
|
|
|
[21] |
刘瑞峰. DNAN基熔铸炸药烤燃响应特性[D]. 北京: 北京理工大学, 2022.
|
|
|
[22] |
王少平, 董受全, 李晓阳, 等. 高超声速反舰导弹作战效能指标体系研究[J]. 指挥控制与仿真, 2016, 38(5):41-46.
|
|
|
[23] |
周树平, 陈景昊, 文锋, 等. 一种用于高超声速导弹的轻质热防护结构:CN211234149U[P].2020-08-11.
|
|
|
[24] |
张倩玮, 陈意高, 崔红, 等. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3):84-93.
|
|
|
[25] |
邢悦, 井致远, 陈永雄, 等. 航空航天用气凝胶材料的研究进展[J]. 材料导报, 2022, 36(22):137-151.
|
|
|
[26] |
|
[1] | LIU Zhenxian, JIANG Jianwei, LI Mei, XIE Hongwei. High Precision Simulation of the Influence of Pressing Ring on EFP Forming Properties [J]. Acta Armamentarii, 2025, 46(1): 231193-. |
[2] | YANG Xi, FENG Yukun, CHEN Zuogang, ZHANG Yan. Investigation of Navigation Performance and Jet Flow Characteristics of Water-jet Propulsion Vessel in Shallow Water [J]. Acta Armamentarii, 2024, 45(S2): 123-132. |
[3] | ZHANG Jiansheng, JING Jianbin, SUN Hao, WANG Xiquan, LI Bo. Numerical Simulation and Experimental Study on Damage Effect of Prestressed T-shaped Beam under Blast Load [J]. Acta Armamentarii, 2024, 45(S2): 193-198. |
[4] | LI Pengfei, XIA Hongli, HOU Chuanyu, ZHOU Yuqi, MIAO Haibin. The Virtual Test of Impact Damage on Weapon SystemBased on SPH Numerical Simulation Method [J]. Acta Armamentarii, 2024, 45(S2): 208-214. |
[5] | JIANG Haojie, PENG Yong, SUN Yuyan, WANG Ziguo, XU Jiapei. Explosive Damage Law and Rapid Calculation Model for RC Bridge Piers [J]. Acta Armamentarii, 2024, 45(S2): 305-316. |
[6] | JIN Wen, JIANG Jianwei, MEN Jianbing, LI Mei, LI Haifeng, ZHOU Xin. Investigation on Dynamic Response Characteristic of the Confined Powder under Impact Loading [J]. Acta Armamentarii, 2024, 45(S1): 183-190. |
[7] | ZHANG Kun, ZHAO Changxiao, HAN Biao, JI Chong, ZHANG Bo, ZHANG Kaikai, TANG Rong. Numerical Simulation and Experimental Study on the Response Characteristics of Cylindrical Shell Charge under Collaborative Impact of Multiple Projectiles [J]. Acta Armamentarii, 2024, 45(S1): 70-80. |
[8] | WANG Qingshuo, GUO Lei, GAO Hongyin, HE Yuan, WANG Chuanting, CHEN Pengxiang, HE Yong. Simulation Study of Axial Vibration of Graded Projectile Structure [J]. Acta Armamentarii, 2024, 45(S1): 191-199. |
[9] | WANG Yajun, YU Rui, LI Weibing, LI Wenbin. Research on the Penetration Characteristics of Rod-shaped EFP and Its Influencing Factors [J]. Acta Armamentarii, 2024, 45(S1): 174-182. |
[10] | WU Chunyao, SONG Chunming, LI Gan, XU Guangan, HAN Tong. Pressure Threshold and Influencing Factors of High-pressure Diaphragm Breaking [J]. Acta Armamentarii, 2024, 45(9): 3307-3316. |
[11] | YANG Guitao, GUO Rui, SONG Pu, GAO Guangfa, YU Yanghui. The Structural Parameters of Combined Liner for Tandem Explosively Formed Projectile [J]. Acta Armamentarii, 2024, 45(9): 3056-3070. |
[12] | LU Hang, LIU Haoran, CHEN Tairan, HUANG Biao, WANG Guoyu, CHEN Huiyan. Experimental and Numerical Study on Navigation Characteristics of Waterjet Propulsion Amphibian Vehicle [J]. Acta Armamentarii, 2024, 45(8): 2629-2645. |
[13] | GUO Junting, YU Yonggang. Complex Flow Field Characteristics inside Combustion Chamber During the Secondary Ignition Process of CTA [J]. Acta Armamentarii, 2024, 45(7): 2282-2293. |
[14] | LI Yanze, QIAN Linfang, FU Jiawei, CHEN Longmiao. Study on the Equivalent Full Charge Conversion Coefficient of the Barrel Life Based on the Thermal-chemical Erosion Model [J]. Acta Armamentarii, 2024, 45(5): 1426-1435. |
[15] | YAN Zechen, YUE Songlin, QIU Yanyu, WANG Jianping, ZHAO Yuetang, SHI Jie, LI Xu. Improvement on the Calculation Method for Reflected Pressure of Shock Wave in Underwater Explosion [J]. Acta Armamentarii, 2024, 45(4): 1196-1207. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||