Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (6): 1747-1760.doi: 10.12382/bgxb.2023.0307
Previous Articles Next Articles
LI Ping1,2, ZHOU Yu1,2, CAO Ronggang1,2,3,*(), LI Fadong1, CAO Yuxi1, LI Jiawu1, ZHANG Anqi1
Received:
2023-04-06
Online:
2023-12-12
Contact:
CAO Ronggang
CLC Number:
LI Ping, ZHOU Yu, CAO Ronggang, LI Fadong, CAO Yuxi, LI Jiawu, ZHANG Anqi. A Denoising Method for Complex Background Noise of Infrared Imaging Guidance System Based on Deep Learning and Dual-domain Fusion[J]. Acta Armamentarii, 2024, 45(6): 1747-1760.
Add to citation manager EndNote|Ris|BibTeX
去噪模型 | 评估指标 | |
---|---|---|
PSNR | SSIM | |
变换域去噪模型 | 26.13 | 0.77 |
空间域去噪模型 | 27.24 | 0.81 |
双域融合去噪模型 | 29.57 | 0.85 |
Table 1 Average denoising performances of three denoising models for Gaussian noise of validation set samples
去噪模型 | 评估指标 | |
---|---|---|
PSNR | SSIM | |
变换域去噪模型 | 26.13 | 0.77 |
空间域去噪模型 | 27.24 | 0.81 |
双域融合去噪模型 | 29.57 | 0.85 |
噪声类型 | 噪声参数 | PSNR | SSIM |
---|---|---|---|
条纹噪声 | 像素值随机变化范围[20, 50] | 34.32 | 0.92 |
网格噪声 | 像素值随机变化范围[20, 50] | 33.31 | 0.91 |
高斯噪声 | 服从高斯分布(σ=50) | 29.57 | 0.85 |
泊松噪声 | 服从泊松分布(λ=60) | 29.12 | 0.84 |
混合噪声 | 网格噪声+高斯噪声+泊松噪声 | 27.84 | 0.82 |
Table 2 Denoising performance of the proposed algorithm for different types of noise
噪声类型 | 噪声参数 | PSNR | SSIM |
---|---|---|---|
条纹噪声 | 像素值随机变化范围[20, 50] | 34.32 | 0.92 |
网格噪声 | 像素值随机变化范围[20, 50] | 33.31 | 0.91 |
高斯噪声 | 服从高斯分布(σ=50) | 29.57 | 0.85 |
泊松噪声 | 服从泊松分布(λ=60) | 29.12 | 0.84 |
混合噪声 | 网格噪声+高斯噪声+泊松噪声 | 27.84 | 0.82 |
去噪算法 | PSNR | |||
---|---|---|---|---|
Set12 数据集 | DND 数据集 | BSD68 数据集 | 本文 数据集 | |
VisuShrink | 22.74 | 21.59 | 21.83 | 22.18 |
BayesShrink | 23.47 | 22.77 | 22.42 | 24.21 |
BM3D | 25.82 | 24.45 | 24.81 | 26.09 |
DnCNN | 28.68 | 25.95 | 25.23 | 26.59 |
FFDNet | 28.65 | 26.01 | 26.35 | 27.37 |
DeamNet | 28.12 | 26.56 | 26.77 | 28.21 |
SCUNet | 28.72 | 28.05 | 27.51 | 29.33 |
DRUNet | 27.90 | 26.41 | 26.59 | 28.34 |
本文算法 | 28.85 | 28.12 | 27.44 | 29.57 |
Tab.3 Comparion of denoising performances (PSNR) of the proposed algorithm and typical algorithms across multiple datasets for Gaussian noise
去噪算法 | PSNR | |||
---|---|---|---|---|
Set12 数据集 | DND 数据集 | BSD68 数据集 | 本文 数据集 | |
VisuShrink | 22.74 | 21.59 | 21.83 | 22.18 |
BayesShrink | 23.47 | 22.77 | 22.42 | 24.21 |
BM3D | 25.82 | 24.45 | 24.81 | 26.09 |
DnCNN | 28.68 | 25.95 | 25.23 | 26.59 |
FFDNet | 28.65 | 26.01 | 26.35 | 27.37 |
DeamNet | 28.12 | 26.56 | 26.77 | 28.21 |
SCUNet | 28.72 | 28.05 | 27.51 | 29.33 |
DRUNet | 27.90 | 26.41 | 26.59 | 28.34 |
本文算法 | 28.85 | 28.12 | 27.44 | 29.57 |
去噪算法 | 参数量(Params) | 计算量(FLOPs) |
---|---|---|
DnCNN | 1.2×106 | 309.8×109 |
FFDNet | 1.1×106 | 68.5×109 |
DRUNet | 32.6×106 | 554.5×109 |
SCUNet | 17.9×106 | 319.1×109 |
DeamNet | 1.8×106 | 582.8×109 |
本文算法 | 0.8×106 | 11.2×109 |
Tab.4 Comparison of computational complexities of the proposed denoising algorithm and other typical deep neural network denoising algorithms
去噪算法 | 参数量(Params) | 计算量(FLOPs) |
---|---|---|
DnCNN | 1.2×106 | 309.8×109 |
FFDNet | 1.1×106 | 68.5×109 |
DRUNet | 32.6×106 | 554.5×109 |
SCUNet | 17.9×106 | 319.1×109 |
DeamNet | 1.8×106 | 582.8×109 |
本文算法 | 0.8×106 | 11.2×109 |
[1] |
张宇飞, 李文豪, 王东振. 某型红外光学导引系统改进设计研究[J]. 航空维修与工程, 2021, 366(12): 68-71.
|
|
|
[2] |
魏政, 杜勇, 刘辉, 等. 多模复合制导技术的发展现状与分析[J]. 航空兵器, 2022, 29(6): 26-33.
|
|
|
[3] |
卢晓, 梁晓庚, 贾晓洪. 红外成像空空导弹智能化抗干扰研究[J]. 红外与激光工程, 2021, 50(4): 20200240.
|
|
|
[4] |
|
[5] |
杨良健, 周先春, 崔程程, 等. 基于旋转块的BM3D图像去噪改进算法[J]. 电子测量技术, 2021, 44(22): 108-113.
|
|
|
[6] |
|
[7] |
|
[8] |
doi: S0893-6080(20)30266-5 pmid: 32829002 |
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
doi: 10.1364/BOE.448838 pmid: 35414974 |
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
doi: S0893-6080(17)30297-6 pmid: 29395652 |
[23] |
doi: 10.1109/ACCESS.2019.2921451 |
[24] |
|
[25] |
|
[26] |
|
[1] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
[2] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
[3] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
[4] | ZHANG Kun, DU Ruiyi, SHI Haotian, HUA Shuai. Prediction of Aircraft Trajectory Based on Mogrifier-BiGRU [J]. Acta Armamentarii, 2024, 45(2): 373-384. |
[5] | TIAN Daming, MIAO Pu. Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning [J]. Acta Armamentarii, 2024, 45(2): 466-473. |
[6] | PENG Peiran, REN Shubo, LI Jianan, ZHOU Hongwei, XU Tingfa. Illumination-aware Multispectral Fusion Network for Pedestrian Detection [J]. Acta Armamentarii, 2023, 44(9): 2622-2630. |
[7] | QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure [J]. Acta Armamentarii, 2023, 44(9): 2639-2649. |
[8] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[9] | WANG Yang, FENG Yongxin, SONG Bixue, TIAN Binghe. A Modulation Recognition Algorithm of DP-DRCnet Convolutional Neural Network [J]. Acta Armamentarii, 2023, 44(2): 545-555. |
[10] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[11] | ZHENG Zhiwei, GUAN Xueyuan, FU Jian, MA Xunqiong, YIN Shang. Projectile Trajectory Prediction Based on CNN-LSTM Model [J]. Acta Armamentarii, 2023, 44(10): 2975-2983. |
[12] | WANG Qiang, WU Letian, LI Hong, WANG Yong, WANG Huan, YANG Wankou. An Infrared Small Target Detection Method via Dual Network Collaboration [J]. Acta Armamentarii, 2023, 44(10): 3165-3176. |
[13] | LI Cheng, LI Jian-xun, TONG Zhong-xiang, JIA Lin-tong, ZHANG Zhi-bo. Research on Partial Image Recognition and Tracking in Infrared Imaging Terminal Guidance [J]. Acta Armamentarii, 2015, 36(7): 1213-1221. |
[14] | SHEN Qing-ming, WANG Guo-bo, ZHAO Jian-zhong, XU Guan-li. Multi-noise Model-based Denoising Method for Radiographic Image [J]. Acta Armamentarii, 2014, 35(12): 2087-2091. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||