Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (2): 240014-.doi: 10.12382/bgxb.2024.0014
Previous Articles Next Articles
ZHANG Fenglin1, DONG Yihao2,*(), XIN Jianshe3, GUO Liping3, GU Xuechen1, QU Jiaqi1
Received:
2024-01-05
Online:
2024-02-27
Contact:
DONG Yihao
CLC Number:
ZHANG Fenglin, DONG Yihao, XIN Jianshe, GUO Liping, GU Xuechen, QU Jiaqi. Parameter Selection and Optimization Algorithm for Low-overload Compressed Air Launch of Small Unmanned Aerial Vehicles Based on Particle Swarm Optimization[J]. Acta Armamentarii, 2025, 46(2): 240014-.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
绝热指数r | 1.4 |
气体常数R/(J·kg-1·K-1) | 287.05 |
空气定容比热cv/(J·kg-1·K-1) | 717.6 |
发射筒长L/m | 1.03 |
发射角度L/(°) | 30 |
低压室横截面积Sl/m2 | 0.020 1 |
弹托面积AT/m2 | 0.016 7 |
脉冲阀流通面积SP/m2 | 0.001 3 |
脉冲阀全开时间tP/ms | 30 |
高压室初始温度Th0/K | 298 |
低压室初始容积V0/m2 | 0.003 3 |
低压室初始温度T0/K | 298 |
低压室初始压强p0/Pa | 101 325 |
Table1 Simulation parameter
参数 | 数值 |
---|---|
绝热指数r | 1.4 |
气体常数R/(J·kg-1·K-1) | 287.05 |
空气定容比热cv/(J·kg-1·K-1) | 717.6 |
发射筒长L/m | 1.03 |
发射角度L/(°) | 30 |
低压室横截面积Sl/m2 | 0.020 1 |
弹托面积AT/m2 | 0.016 7 |
脉冲阀流通面积SP/m2 | 0.001 3 |
脉冲阀全开时间tP/ms | 30 |
高压室初始温度Th0/K | 298 |
低压室初始容积V0/m2 | 0.003 3 |
低压室初始温度T0/K | 298 |
低压室初始压强p0/Pa | 101 325 |
参数 | 数值 |
---|---|
模拟无人机质量/kg | 7 |
弹托质量/kg | 1 |
储气罐容积/L | 25 |
发射筒直径/mm | 160 |
发射筒长/mm | 1030 |
Table 2 Parameters of compressed air launch test
参数 | 数值 |
---|---|
模拟无人机质量/kg | 7 |
弹托质量/kg | 1 |
储气罐容积/L | 25 |
发射筒直径/mm | 160 |
发射筒长/mm | 1030 |
参数 | 高压室压强/MPa | ||
---|---|---|---|
0.6 | 0.7 | 0.8 | |
高速摄像机拍摄速度/(m·s-1) | 30.89 | 32.07 | 33.99 |
仿真出筒速度/(m·s-1) | 32.16 | 33.42 | 35.68 |
误差/% | 4.11 | 4.04 | 4.97 |
Table 3 Comparson of experimental and simulated ejecting velocities
参数 | 高压室压强/MPa | ||
---|---|---|---|
0.6 | 0.7 | 0.8 | |
高速摄像机拍摄速度/(m·s-1) | 30.89 | 32.07 | 33.99 |
仿真出筒速度/(m·s-1) | 32.16 | 33.42 | 35.68 |
误差/% | 4.11 | 4.04 | 4.97 |
参数 | 高压室压强/MPa | ||
---|---|---|---|
0.6 | 0.7 | 0.8 | |
试验峰值加速度/(m·s-2) | 756.34 | 820.49 | 931.08 |
仿真峰值加速度/(m·s-2) | 745.49 | 809.30 | 920.56 |
误差/% | 1.43 | 1.36 | 1.13 |
Table 4 Comparson of experimental and simulated peak accelerations
参数 | 高压室压强/MPa | ||
---|---|---|---|
0.6 | 0.7 | 0.8 | |
试验峰值加速度/(m·s-2) | 756.34 | 820.49 | 931.08 |
仿真峰值加速度/(m·s-2) | 745.49 | 809.30 | 920.56 |
误差/% | 1.43 | 1.36 | 1.13 |
发射参数 | PSO算法 | CBPSO算法 |
---|---|---|
高压室压强/MPa | 0.673 | 0.792 |
高压室容积/L | 21 | 35 |
低压室容积/L | 8.5 | 13.0 |
脉冲阀全开时间/ms | 80.3 | 86.9 |
阀门直径/mm | 64.8 | 35.2 |
速度/(m·s-1) | 31.05 | 30.02 |
加速度/(m·s-2) | 605.78 | 495.47 |
Table 5 Comparison of launch parameter optimization results
发射参数 | PSO算法 | CBPSO算法 |
---|---|---|
高压室压强/MPa | 0.673 | 0.792 |
高压室容积/L | 21 | 35 |
低压室容积/L | 8.5 | 13.0 |
脉冲阀全开时间/ms | 80.3 | 86.9 |
阀门直径/mm | 64.8 | 35.2 |
速度/(m·s-1) | 31.05 | 30.02 |
加速度/(m·s-2) | 605.78 | 495.47 |
[1] |
|
[2] |
|
[3] |
|
[4] |
周航, 冯军红, 唐银银, 等. 一种超高速制导弹用一体化卫星导航系统设计[J]. 海军工程大学学报, 2024, 36(04):64-70.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
刘南宏, 张新敬, 徐玉杰, 等. 筒式压缩空气弹射系统内弹道性能研究[J]. 兵器装备工程学报, 2022, 43(1):79-85.
|
|
|
[10] |
史耀祖, 李庚, 何明胜, 等. 某简易发射系统设计与发射动力学分析[J]. 兵工自动化, 2021, 40(1):67-70.
|
|
|
[11] |
李博平, 李国庆, 张笈玮, 等. 压缩空气弹射系统内弹道特性[J]. 兵工学报, 2021, 42(12):2606-2616.
doi: 10.3969/j.issn.1000-1093.2021.12.008 |
doi: 10.3969/j.issn.1000-1093.2021.12.008 |
|
[12] |
陶如意, 叶涛, 李鹏, 等. 小型物体冷气发射系统内弹道过程分析[J]. 弹道学报, 2012, 24(4):82-85.
|
|
|
[13] |
刘少刚, 刘刚, 赵丹, 等. 气动发射灭火炮伴随管式击发装置研究[J]. 兵工学报, 2013, 34(10):1318-1323.
doi: 10. 3969/ j. issn. 1000-1093. 2013. 10. 019 |
|
|
[14] |
刘刚. 气动发射式高层建筑灭火炮研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
|
|
|
[15] |
赫雷, 尚兴超, 周克栋, 等. 一种压缩空气驱动的武器发射过程动力学分析[J]. 振动与冲击, 2014, 33(21):202-206.
|
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
张钊, 彭一明, 周福亮, 等. 折叠翼无人机冷气发射装置动态特性分析及优化[J]. 北京航空航天大学学报, 2022, 48(10):1951-1959.
|
|
|
[20] |
杜尧. 开口缸气动弹射装置动力学分析与优化[D]. 南京: 南京理工大学, 2018.
|
|
|
[21] |
杨风波, 马大为, 杨帆, 等. 高压弹射装置内弹道建模与计算[J]. 兵工学报, 2013, 34(5):527-534.
doi: 10. 3969/ j. issn. 1000-1093. 2013. 05. 003 |
|
|
[22] |
曹润铎. 某小型机载制导弹药弹道优化设计及发射过程研究[D]. 南京: 南京理工大学, 2020.
|
|
[1] | HOU Peng, GE Yuxue, PEI Yang, YUE Yuan, AI Junqiang. UAV Air-to-ground Attack Task Assignment Method Based on Damage Assessment Results [J]. Acta Armamentarii, 2025, 46(2): 240212-. |
[2] | ZHANG Xinze, XIAO Haijian, LIU Xinglong, XING Kongrui, LU Xiang. Design and Realization of a Ducted Fan Water-air Amphibious UAV [J]. Acta Armamentarii, 2025, 46(1): 231172-. |
[3] | HU Mingzhe, LI Xuguang, REN Zhiying, ZENG Shuai. UAV 3D Path Planning Based on A* Algorithm with Improved Heuristic Function [J]. Acta Armamentarii, 2024, 45(S1): 302-307. |
[4] | LI Mao, ZHAO Mingtao, SHA Shichao, LI Xiao, HUA Weihong. Focusing Strategy and Effect Analysis of UAV-based Laser Relay Redirectional Energy Transmission Device [J]. Acta Armamentarii, 2024, 45(S1): 316-321. |
[5] | PAN Zishuang, SU Xichao, HAN Wei, LIU Wenlin, YU Dazhao, WANG Jie. Cooperative Combat Coalition Formation of Heterogeneous UAV Swarm Based on Dynamic Consensus-based Grouping Algorithm [J]. Acta Armamentarii, 2024, 45(9): 3177-3190. |
[6] | LIU Siyu, ZHANG Deyu, MING Zhiyuan, LIU Mengzhen, LIU Ziyu, CHEN Qiming, ZHANG Jian, WU Jinglong, YAN Tianyi. Remote Brain-controlled Unmanned Aerial Vehicle System Based on Brain-machine Interface and Human-machine Closed Loop [J]. Acta Armamentarii, 2024, 45(9): 3191-3203. |
[7] | WANG Dongzhen, ZHANG Yue, ZHAO Yu, HUANG Daqing. A UAV Trajectory Optimization Method Based on RRT-Dubins [J]. Acta Armamentarii, 2024, 45(8): 2761-2773. |
[8] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
[9] | LIU Fang, LI Shiwei, LU Xi, GUO Ce’an. Prediction of Peak Overpressure of Underwater Cylindrical Charge Based on PSO-CNN-XGBoost [J]. Acta Armamentarii, 2024, 45(5): 1602-1612. |
[10] | LI Huanhuan, LIU Hui, GAI Jiangtao, LI Xunming. Steering Control of Dual-motor Coupling Drive Tracked Vehicle Based on PSO PID Parameter Optimization [J]. Acta Armamentarii, 2024, 45(3): 916-924. |
[11] | LOU Shuhan, WANG Chongchong, GONG Wei, DENG Liyuan, LI Li. Collaborative Regional Information Collection Strategy Based on MLAT-DRL Algorithm [J]. Acta Armamentarii, 2024, 45(12): 4423-4434. |
[12] | ZHOU Hao, BAO Xiaopeng, ZHANG Honggang. Improved Design of Phase Modulation Compensation and Analysis of Disturbance Suppression for UAV Active Disturbance Rejection Control [J]. Acta Armamentarii, 2024, 45(10): 3619-3630. |
[13] | ZHOU Yue, LI Zhuangzhuang, ZHENG Ranshun, LI Jun. Research on Safe Separation Mechanism of UAV Rocket Booster [J]. Acta Armamentarii, 2024, 45(1): 219-230. |
[14] | LU Ying, PANG Lichen, CHEN Yusi, SONG Wanying, FU Yanfang. A Swarm Intelligence Algorithm for UAV Path Planning in Urban Warfare [J]. Acta Armamentarii, 2023, 44(S2): 146-156. |
[15] | CAO Zhengyang, ZHANG Bing, BAI Yixuan, GOU Kenan. Multi-UAV Cooperative Navigation Method Based on Fusion of GNSS/INS/VNS Positioning Information [J]. Acta Armamentarii, 2023, 44(S2): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||