Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (5): 240893-.doi: 10.12382/bgxb.2024.0893
Special Issue: 蓝色智慧·兵器科学与技术
Previous Articles Next Articles
SUN Shiyan, LI Lin, ZHU Huimin*(), SHI Zhangsong, LIANG Weige
Received:
2024-09-25
Online:
2025-05-07
Contact:
ZHU Huimin
CLC Number:
SUN Shiyan, LI Lin, ZHU Huimin, SHI Zhangsong, LIANG Weige. Intelligent Recognition of Flight Pattern Based on IFPRM-SBLFS Deep Learning[J]. Acta Armamentarii, 2025, 46(5): 240893-.
Add to citation manager EndNote|Ris|BibTeX
输入 | 层 | 过滤器in×out | 输出尺寸C×L | 范围限制 |
---|---|---|---|---|
44×256 | ||||
分段截断 | d=11, s=1, p=5 | (44×22)×256 | ||
自适应图嵌入 | 图形卷积1 | 22×128,O=4 | (44×128)×256 | |
图形卷积2 | 128×64,O=4 | (44×64)×256 | ||
线性层1 | 2006×256 | 256×256 | ||
变压器模块1 | r=1 | 256×256 | ||
变压器模块2 | r=1 | 256×256 | [0,4) | |
变压器模块3 | r=1 | 256×128 | [4,8) | |
变压器编码器 | 变压器模块4 | r=1 | 256×64 | [8,16) |
变压器模块5 | r=2 | 256×32 | [16,32) | |
变压器模块6 | r=2 | 256×16 | [32,64) | |
变压器模块7 | r=2 | 256×8 | [64,128) | |
变压器模块8 | r=2 | 256×4 | [128,∞) | |
卷积层1 | 256×256, k=4,s=1,p=1 | [256×4,256×8,…,256×256] | ||
飞行模式分类器 | 卷积层2 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | |
卷积层3 | 256×10,k=4,s=1,p=1 | [10×4,10×8,…,10×256] | ||
卷积层4 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | ||
卷积层5 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | ||
边界回归器 | 卷积层6 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | |
卷积层7 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | ||
卷积层8 | 256×256,k=4,s=1,p=1 | [6×4,6×8,…,6×256] |
Table 1 Model structure and hyperparameters
输入 | 层 | 过滤器in×out | 输出尺寸C×L | 范围限制 |
---|---|---|---|---|
44×256 | ||||
分段截断 | d=11, s=1, p=5 | (44×22)×256 | ||
自适应图嵌入 | 图形卷积1 | 22×128,O=4 | (44×128)×256 | |
图形卷积2 | 128×64,O=4 | (44×64)×256 | ||
线性层1 | 2006×256 | 256×256 | ||
变压器模块1 | r=1 | 256×256 | ||
变压器模块2 | r=1 | 256×256 | [0,4) | |
变压器模块3 | r=1 | 256×128 | [4,8) | |
变压器编码器 | 变压器模块4 | r=1 | 256×64 | [8,16) |
变压器模块5 | r=2 | 256×32 | [16,32) | |
变压器模块6 | r=2 | 256×16 | [32,64) | |
变压器模块7 | r=2 | 256×8 | [64,128) | |
变压器模块8 | r=2 | 256×4 | [128,∞) | |
卷积层1 | 256×256, k=4,s=1,p=1 | [256×4,256×8,…,256×256] | ||
飞行模式分类器 | 卷积层2 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | |
卷积层3 | 256×10,k=4,s=1,p=1 | [10×4,10×8,…,10×256] | ||
卷积层4 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | ||
卷积层5 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | ||
边界回归器 | 卷积层6 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | |
卷积层7 | 256×256,k=4,s=1,p=1 | [256×4,256×8,…,256×256] | ||
卷积层8 | 256×256,k=4,s=1,p=1 | [6×4,6×8,…,6×256] |
衡量标准 及平均值 | MACTW[ | FDA+C-Means[ | SSGAN[ | IFPRM-SBLFS (GSCE loss) | CWFPL | 精确度/% | 召回率/% | F1分数 |
---|---|---|---|---|---|---|---|---|
TT-Acc | 0.6257 | 0.8279 | 0.8672 | 0.9130 | 0.9637 | |||
TIoU | 0.5384 | 0.6965 | 0.7251 | 0.7478 | 0.8401 | |||
其他状态 | 0.8469 | 0.8993 | 0.8349 | 0.9637 | 0.9852 | 99.13 | 96.51 | 97.80 |
起飞 | 0.0000 | 0.1689 | 0.0375 | 0.5879 | 0.7649 | 97.24 | 95.37 | 96.30 |
爬升与滚转 | 0.0000 | 0.6768 | 0.2498 | 0.7638 | 0.7588 | 99.45 | 88.42 | 93.61 |
半滚倒转 | 0.0000 | 0.4639 | 0.3665 | 0.5869 | 0.7742 | 98.62 | 88.94 | 93.53 |
懒八字 | 0.4672 | 0.5724 | 0.5347 | 0.7968 | 0.8749 | 99.09 | 91.66 | 95.23 |
滚转 | 0.5738 | 0.7235 | 0.7352 | 0.8426 | 0.9120 | 99.57 | 90.83 | 95.00 |
爬升和转弯 | 0.4985 | 0.8840 | 0.8279 | 0.8549 | 0.9436 | 99.14 | 91.72 | 95.29 |
平飞 | 0.0000 | 0.7426 | 0.6429 | 0.6642 | 0.9752 | 99.32 | 91.68 | 95.35 |
下降转弯 | 0.5648 | 0.8019 | 0.7846 | 0.7954 | 0.9472 | 99.76 | 90.35 | 94.82 |
着陆 | 0.0000 | 0.5243 | 0.6999 | 0.7921 | 0.9020 | 99.33 | 91.89 | 95.47 |
平均值 | 0.5902 | 0.6458 | 0.5714 | 0.7648 | 0.8838 | 99.07 | 91.74 | 95.26 |
Table 2 Comparison of recognition results of IFPRM-SBLFS and other methods
衡量标准 及平均值 | MACTW[ | FDA+C-Means[ | SSGAN[ | IFPRM-SBLFS (GSCE loss) | CWFPL | 精确度/% | 召回率/% | F1分数 |
---|---|---|---|---|---|---|---|---|
TT-Acc | 0.6257 | 0.8279 | 0.8672 | 0.9130 | 0.9637 | |||
TIoU | 0.5384 | 0.6965 | 0.7251 | 0.7478 | 0.8401 | |||
其他状态 | 0.8469 | 0.8993 | 0.8349 | 0.9637 | 0.9852 | 99.13 | 96.51 | 97.80 |
起飞 | 0.0000 | 0.1689 | 0.0375 | 0.5879 | 0.7649 | 97.24 | 95.37 | 96.30 |
爬升与滚转 | 0.0000 | 0.6768 | 0.2498 | 0.7638 | 0.7588 | 99.45 | 88.42 | 93.61 |
半滚倒转 | 0.0000 | 0.4639 | 0.3665 | 0.5869 | 0.7742 | 98.62 | 88.94 | 93.53 |
懒八字 | 0.4672 | 0.5724 | 0.5347 | 0.7968 | 0.8749 | 99.09 | 91.66 | 95.23 |
滚转 | 0.5738 | 0.7235 | 0.7352 | 0.8426 | 0.9120 | 99.57 | 90.83 | 95.00 |
爬升和转弯 | 0.4985 | 0.8840 | 0.8279 | 0.8549 | 0.9436 | 99.14 | 91.72 | 95.29 |
平飞 | 0.0000 | 0.7426 | 0.6429 | 0.6642 | 0.9752 | 99.32 | 91.68 | 95.35 |
下降转弯 | 0.5648 | 0.8019 | 0.7846 | 0.7954 | 0.9472 | 99.76 | 90.35 | 94.82 |
着陆 | 0.0000 | 0.5243 | 0.6999 | 0.7921 | 0.9020 | 99.33 | 91.89 | 95.47 |
平均值 | 0.5902 | 0.6458 | 0.5714 | 0.7648 | 0.8838 | 99.07 | 91.74 | 95.26 |
统计指标 | 数值 |
---|---|
总参总量/M | 12.37 |
模型大小/MB | 45.23 |
浮点运算(FLOPs)/M | 566.24 |
每个样本的计算时间/ms | 1.72 |
连续提取的计算时间/ms | 968.53 |
Table 3 Time complexity and space complexity of IFPRM-SBLFS
统计指标 | 数值 |
---|---|
总参总量/M | 12.37 |
模型大小/MB | 45.23 |
浮点运算(FLOPs)/M | 566.24 |
每个样本的计算时间/ms | 1.72 |
连续提取的计算时间/ms | 968.53 |
Fig.3 Visualization results for different pattern recognitions(the blue curve represents the four flight parameters collected in real time, the IFPRM-SBLFS model prediction results are marked with red circles, and the light purple background is used to distinguish a single continuous flight state)
[1] |
|
[2] |
王志森, 张召悦, 冯朝辉, 等. 终端区飞行轨迹聚类分析及异常轨迹识别[J]. 科学技术与工程, 2022, 29(9):3807-3813.
|
|
|
[3] |
|
[4] |
任济寰, 吴祥, 薄煜明, 等. 基于增强上下文信息长短期记忆网络的弹道轨迹预测[J]. 兵工学报, 2023, 44(2):462-471.
doi: 10.12382/bgxb.2021.0489 |
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
殷之平, 黄勇胜, 田珈玮, 等. 一种基于二维轨迹与时序重要点的飞机机动划分与识别方法[J]. 航空工程进展, 2025, 16(1):45-53.
|
|
|
[16] |
张裕禄, 毕红葵, 叶泽浩, 等. 基于随机森林的HRGV滑翔段飞行模式识别[J]. 战术导弹技术, 2020(2): 1-8,21.
|
|
|
[17] |
|
[18] |
|
[19] |
孟浩, 田洋, 孙宇婷, 等. 全局注意力关系网络的小样本船舶识别[J]. 仪器仪表学报, 2021, 42(12):220-227.
|
|
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[1] | QIN Yuemei, CHEN Zhong, YANG Yanbo, LI Shuying. Joint State Equality Constraint Identification and Recursive Filtering Based on Deep Learning [J]. Acta Armamentarii, 2025, 46(6): 240578-. |
[2] | WANG Xuan, SHI Zhangsong, SHE Bo, SUN Shiyan, QIN Fenqi. Remaining Life Prediction Method Based on BLSTMN-VAE under Degradation Trend Smoothing Constraint [J]. Acta Armamentarii, 2025, 46(5): 240635-. |
[3] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. |
[4] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
[5] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
[6] | LI Ping, ZHOU Yu, CAO Ronggang, LI Fadong, CAO Yuxi, LI Jiawu, ZHANG Anqi. A Denoising Method for Complex Background Noise of Infrared Imaging Guidance System Based on Deep Learning and Dual-domain Fusion [J]. Acta Armamentarii, 2024, 45(6): 1747-1760. |
[7] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
[8] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
[9] | ZHANG Kun, DU Ruiyi, SHI Haotian, HUA Shuai. Prediction of Aircraft Trajectory Based on Mogrifier-BiGRU [J]. Acta Armamentarii, 2024, 45(2): 373-384. |
[10] | TIAN Daming, MIAO Pu. Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning [J]. Acta Armamentarii, 2024, 45(2): 466-473. |
[11] | DING Xiwen, CHENG Hongchang, YUAN Yuan, SU Yue. Detection Method for Field-of-view Defect of Ultraviolet Image Intensifier Based on Improved SSD Algorithm [J]. Acta Armamentarii, 2024, 45(12): 4350-4363. |
[12] | SUN Kai, ZHANG Cheng, ZHAN Tian, SU Di. Multi-view Stereo Vision Reconstruction Network with Fusion Attention Mechanism and Multi-layer Dynamic Deformable Convolution [J]. Acta Armamentarii, 2024, 45(10): 3631-3641. |
[13] | WANG Jian, HUANG Ying, GAO Xiaoyu, WANG Tuo, WANG Xu, HUI Jiahe. Blockage Location Algorithm of Multi-cylinder Fuel Injectors Based on Stacked Sparse Autoencoder [J]. Acta Armamentarii, 2024, 45(10): 3706-3717. |
[14] | PENG Peiran, REN Shubo, LI Jianan, ZHOU Hongwei, XU Tingfa. Illumination-aware Multispectral Fusion Network for Pedestrian Detection [J]. Acta Armamentarii, 2023, 44(9): 2622-2630. |
[15] | QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure [J]. Acta Armamentarii, 2023, 44(9): 2639-2649. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||