Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (12): 4350-4363.doi: 10.12382/bgxb.2023.1091
Previous Articles Next Articles
DING Xiwen1, CHENG Hongchang1,2, YUAN Yuan1,2, SU Yue1,*()
Received:
2023-11-07
Online:
2024-03-22
Contact:
SU Yue
CLC Number:
DING Xiwen, CHENG Hongchang, YUAN Yuan, SU Yue. Detection Method for Field-of-view Defect of Ultraviolet Image Intensifier Based on Improved SSD Algorithm[J]. Acta Armamentarii, 2024, 45(12): 4350-4363.
Add to citation manager EndNote|Ris|BibTeX
实验硬件配置 | 型号 | 生产厂家 | |
---|---|---|---|
光源 | BM-Ⅰ No.1608 | 上海灯泡三厂 | |
外接电源 | GWLNSTEK GPP-4323 | 固纬电子(苏州)有限公司 | |
数码相机 | Canon DS126151 400D | 佳能(中国)有限公司 | |
计算机 | 处理器 | Intel(R) Core(TM) i5-12400 4.40GHz | 英特尔(中国)有限公司 |
显卡 | Nvidia GTX 3060 12GB | 技嘉科技股份有限公司 |
Table 1 Configuration of hardware environment of the experimental platform
实验硬件配置 | 型号 | 生产厂家 | |
---|---|---|---|
光源 | BM-Ⅰ No.1608 | 上海灯泡三厂 | |
外接电源 | GWLNSTEK GPP-4323 | 固纬电子(苏州)有限公司 | |
数码相机 | Canon DS126151 400D | 佳能(中国)有限公司 | |
计算机 | 处理器 | Intel(R) Core(TM) i5-12400 4.40GHz | 英特尔(中国)有限公司 |
显卡 | Nvidia GTX 3060 12GB | 技嘉科技股份有限公司 |
实验软件环境 | 具体版本号 |
---|---|
Python | 3.6 |
CUDA | 11.3 |
CuDnn | 8.4.1 |
Table 2 Configuration of software environment of the experimental platform
实验软件环境 | 具体版本号 |
---|---|
Python | 3.6 |
CUDA | 11.3 |
CuDnn | 8.4.1 |
算法 | 准确率/ % | 召回率/ % | F1分数/ % | mAP/% | mAP/ % | FPS/ (帧·s-1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
暗点 | 亮点 | 暗斑 | 亮斑 | 条纹状 | ||||||
SSD算法 | 90.0 | 14.3 | 23.2 | 22.97 | 43.05 | 48.57 | 42.12 | 27.07 | 36.76 | 70.90 |
CBAM-SSD算法 | 87.6 | 26.4 | 40.5 | 32.80 | 46.12 | 60.58 | 53.42 | 36.89 | 45.96 | 63.53 |
FPN-SSD算法 | 74.7 | 32.9 | 43.4 | 44.82 | 40.13 | 66.29 | 57.56 | 38.49 | 49.46 | 51.47 |
FPN-CBAM-SSD算法 | 81.9 | 51.9 | 63.2 | 61.11 | 62.81 | 71.41 | 76.67 | 56.63 | 65.73 | 15.57 |
Table 3 Comparison of ablation test performance indexes
算法 | 准确率/ % | 召回率/ % | F1分数/ % | mAP/% | mAP/ % | FPS/ (帧·s-1) | ||||
---|---|---|---|---|---|---|---|---|---|---|
暗点 | 亮点 | 暗斑 | 亮斑 | 条纹状 | ||||||
SSD算法 | 90.0 | 14.3 | 23.2 | 22.97 | 43.05 | 48.57 | 42.12 | 27.07 | 36.76 | 70.90 |
CBAM-SSD算法 | 87.6 | 26.4 | 40.5 | 32.80 | 46.12 | 60.58 | 53.42 | 36.89 | 45.96 | 63.53 |
FPN-SSD算法 | 74.7 | 32.9 | 43.4 | 44.82 | 40.13 | 66.29 | 57.56 | 38.49 | 49.46 | 51.47 |
FPN-CBAM-SSD算法 | 81.9 | 51.9 | 63.2 | 61.11 | 62.81 | 71.41 | 76.67 | 56.63 | 65.73 | 15.57 |
算法 | 平均精准度/% | mAP/ % | 参数量/ 106 | GFLOPS/ G | FPS/ (帧·s-1) | ||||
---|---|---|---|---|---|---|---|---|---|
暗点 | 亮点 | 暗斑 | 亮斑 | 条纹状 | |||||
SSD算法 | 22.97 | 43.05 | 48.57 | 42.12 | 27.07 | 36.76 | 24.15 | 61.14 | 70.90 |
FPN-CBAM-SSD算法 | 61.11 | 62.81 | 71.41 | 76.67 | 56.63 | 65.73 | 30.83 | 66.13 | 15.57 |
Faster-RCNN算法 | 18.54 | 23.53 | 72.85 | 61.16 | 42.84 | 43.78 | 136.77 | 369.82 | 11.92 |
YOLOv5算法 | 31.41 | 23.40 | 32.04 | 32.79 | 25.46 | 29.02 | 7.07 | 16.51 | 102.19 |
YOLOv8算法 | 31.84 | 25.25 | 36.72 | 34.62 | 27.79 | 31.25 | 11.14 | 28.66 | 96.11 |
Table 4 Performance comparison of different detection algorithms on the self-built UV imageintensifier field of view dataset
算法 | 平均精准度/% | mAP/ % | 参数量/ 106 | GFLOPS/ G | FPS/ (帧·s-1) | ||||
---|---|---|---|---|---|---|---|---|---|
暗点 | 亮点 | 暗斑 | 亮斑 | 条纹状 | |||||
SSD算法 | 22.97 | 43.05 | 48.57 | 42.12 | 27.07 | 36.76 | 24.15 | 61.14 | 70.90 |
FPN-CBAM-SSD算法 | 61.11 | 62.81 | 71.41 | 76.67 | 56.63 | 65.73 | 30.83 | 66.13 | 15.57 |
Faster-RCNN算法 | 18.54 | 23.53 | 72.85 | 61.16 | 42.84 | 43.78 | 136.77 | 369.82 | 11.92 |
YOLOv5算法 | 31.41 | 23.40 | 32.04 | 32.79 | 25.46 | 29.02 | 7.07 | 16.51 | 102.19 |
YOLOv8算法 | 31.84 | 25.25 | 36.72 | 34.62 | 27.79 | 31.25 | 11.14 | 28.66 | 96.11 |
算法 | mAP/ % | 参数量/ 106 | GFLOPS/ 109 | FPS/ (帧·s-1) |
---|---|---|---|---|
SSD算法 | 79.24 | 26.15 | 62.65 | 46.38 |
FPN-CBAM-SSD算法 | 83.63 | 31.77 | 66.83 | 13.96 |
Faster-RCNN算法 | 78.46 | 137.08 | 370.19 | 7.19 |
YOLOv5算法 | 77.12 | 7.12 | 16.64 | 101.41 |
YOLOv8算法 | 81.61 | 11.14 | 28.69 | 93.94 |
Table 5 Performance comparison of different detection a lgorithms on VOC 07+12 dataset
算法 | mAP/ % | 参数量/ 106 | GFLOPS/ 109 | FPS/ (帧·s-1) |
---|---|---|---|---|
SSD算法 | 79.24 | 26.15 | 62.65 | 46.38 |
FPN-CBAM-SSD算法 | 83.63 | 31.77 | 66.83 | 13.96 |
Faster-RCNN算法 | 78.46 | 137.08 | 370.19 | 7.19 |
YOLOv5算法 | 77.12 | 7.12 | 16.64 | 101.41 |
YOLOv8算法 | 81.61 | 11.14 | 28.69 | 93.94 |
[1] |
石峰, 程宏昌, 闫磊, 等. 紫外探测技术[M]. 北京: 国防工业出版社, 2017:12.
|
|
|
[2] |
向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社,1999.
|
|
|
[3] |
许强. 军用紫外探测技术及应用[M]. 北京: 北京航空航天大学出版社, 2010.
|
|
|
[4] |
张忠廉, 刘榴娣. 紫外线技术在军事上的应用研究[J]. 光学技术, 2000, 26(4):289-293, 296.
|
|
|
[5] |
杨杰. 紫外探测技术的应用与进展[J]. 光电子技术, 2011, 31(4):274-278.
|
|
|
[6] |
张简屏, 常乐, 陈超, 等. 日盲紫外像增强器的研究现状及应用前景[J]. 云光技术, 2021, 53(2):68-74.
|
|
|
[7] |
唐光华, 宋晓峰, 汪述猛, 等. 日盲型紫外像增强管的应用及研制进展[J]. 光电子技术, 2016, 36(3):164.
|
|
|
[8] |
赵清波. 宽光谱像增强器辐射增益和视场缺陷测试技术研究[D]. 南京: 南京理工大学, 2008.
|
|
|
[9] |
|
[10] |
杨琦. 紫外像增强器视场缺陷检测技术研究[D]. 南京: 南京理工大学, 2011.
|
|
|
[11] |
汤勃, 孔建益, 伍世虔. 机器视觉表面缺陷检测综述[J]. 中国图象图形学报, 2017, 22(12):1640-1663.
|
|
|
[12] |
张涛, 刘玉婷, 杨亚宁, 等. 基于机器视觉的表面缺陷检测研究综述[J]. 科学技术与工程, 2020, 20(35):14366-14376.
|
|
|
[13] |
顾佳晨, 高雷, 刘路硌. 基于深度学习的目标检测算法在冷轧表面缺陷检测中的应用[J]. 冶金自动化, 2019, 43(6): 19-22.
|
|
|
[14] |
张良安, 陈洋, 谢胜龙, 等. 基于机器视觉与深度学习的飞机防护栅裂纹检测系统[J]. 兵工学报, 2023, 44(2):507-516.
doi: 10.12382/bgxb.2021.0674 |
doi: 10.12382/bgxb.2021.0674 |
|
[15] |
郭永红, 牛海涛, 史超, 等. 基于卷积和注意力机制的小样本目标检测[J]. 兵工学报, 2023, 44(11):3508-3515.
doi: 10.12382/bgxb.2022.1167 |
doi: 10.12382/bgxb.2022.1167 |
|
[16] |
景军锋, 刘娆. 基于卷积神经网络的织物表面缺陷分类方法[J]. 测控技术, 2018, 37(9): 20-25.
|
|
|
[17] |
李文俊, 陈斌, 李建明, 等. 基于深度神经网络的表面划痕识别方法[J]. 计算机应用, 2019, 39(7):2103-2108.
|
|
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[1] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. |
[2] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
[3] | LI Ping, ZHOU Yu, CAO Ronggang, LI Fadong, CAO Yuxi, LI Jiawu, ZHANG Anqi. A Denoising Method for Complex Background Noise of Infrared Imaging Guidance System Based on Deep Learning and Dual-domain Fusion [J]. Acta Armamentarii, 2024, 45(6): 1747-1760. |
[4] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
[5] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
[6] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
[7] | ZHANG Kun, DU Ruiyi, SHI Haotian, HUA Shuai. Prediction of Aircraft Trajectory Based on Mogrifier-BiGRU [J]. Acta Armamentarii, 2024, 45(2): 373-384. |
[8] | TIAN Daming, MIAO Pu. Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning [J]. Acta Armamentarii, 2024, 45(2): 466-473. |
[9] | SUN Kai, ZHANG Cheng, ZHAN Tian, SU Di. Multi-view Stereo Vision Reconstruction Network with Fusion Attention Mechanism and Multi-layer Dynamic Deformable Convolution [J]. Acta Armamentarii, 2024, 45(10): 3631-3641. |
[10] | PENG Peiran, REN Shubo, LI Jianan, ZHOU Hongwei, XU Tingfa. Illumination-aware Multispectral Fusion Network for Pedestrian Detection [J]. Acta Armamentarii, 2023, 44(9): 2622-2630. |
[11] | QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure [J]. Acta Armamentarii, 2023, 44(9): 2639-2649. |
[12] | ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images [J]. Acta Armamentarii, 2023, 44(8): 2453-2464. |
[13] | WANG Yang, FENG Yongxin, SONG Bixue, TIAN Binghe. A Modulation Recognition Algorithm of DP-DRCnet Convolutional Neural Network [J]. Acta Armamentarii, 2023, 44(2): 545-555. |
[14] | ZHANG Liang'an, CHEN Yang, XIE Shenglong, LIU Tongxin. Crack Detection System for Aircraft Protective Grill based on Machine Vision and Deep Learning [J]. Acta Armamentarii, 2023, 44(2): 507-516. |
[15] | WANG Qiang, WU Letian, LI Hong, WANG Yong, WANG Huan, YANG Wankou. An Infrared Small Target Detection Method via Dual Network Collaboration [J]. Acta Armamentarii, 2023, 44(10): 3165-3176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||