Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (S1): 10-19.doi: 10.12382/bgxb.2024.0511
Previous Articles Next Articles
KAN Wenxing1, FENG Hengzhen1,*(), LOU Wenzhong1, TIAN Zhongwang2, FAN Chenyang2, SHI Yonghui3
Received:
2024-06-28
Online:
2024-11-06
Contact:
FENG Hengzhen
CLC Number:
KAN Wenxing, FENG Hengzhen, LOU Wenzhong, TIAN Zhongwang, FAN Chenyang, SHI Yonghui. Simulation on Detonation Transfer/Explosion Interruption Performance of Flyer-type Fuze Micro-explosive Train[J]. Acta Armamentarii, 2024, 45(S1): 10-19.
Add to citation manager EndNote|Ris|BibTeX
ρCA/ (kg·m-3) | DCA/ (m·s-1) | pC-J/ GPa | ACA/ GPa | BCA/ GPa | R1 | R2 | ω | E0,CA/ GPa |
---|---|---|---|---|---|---|---|---|
2290 | 4700 | 12.55 | 410 | 4.5 | 4.9 | 1.3 | 0.3 | 8.5 |
Table 1 Copper azide simulation parameters[22]
ρCA/ (kg·m-3) | DCA/ (m·s-1) | pC-J/ GPa | ACA/ GPa | BCA/ GPa | R1 | R2 | ω | E0,CA/ GPa |
---|---|---|---|---|---|---|---|---|
2290 | 4700 | 12.55 | 410 | 4.5 | 4.9 | 1.3 | 0.3 | 8.5 |
ρair/(kg·m-3) | C0 | C1 | C2 | C3 |
---|---|---|---|---|
1.25×10-3 | -1×10-6 | -0.1 | 0 | 0 |
C4 | C5 | C6 | E0,air/GPa | V0 |
0.4 | 0.4 | 0 | 2.5×10-6 | 1 |
Table 2 Air simulation parameters[23]
ρair/(kg·m-3) | C0 | C1 | C2 | C3 |
---|---|---|---|---|
1.25×10-3 | -1×10-6 | -0.1 | 0 | 0 |
C4 | C5 | C6 | E0,air/GPa | V0 |
0.4 | 0.4 | 0 | 2.5×10-6 | 1 |
ρTi/(kg·m-3) | E Ti/GPa | G Ti/GPa | PR Ti | A Ti/GPa | B Ti |
---|---|---|---|---|---|
4510 | 113.76 | 43.75 | 0.3 | 1.098 | 1.092 |
N Ti | C Ti | M Ti | EPOS Ti/s-1 | D1 | |
0.93 | 0.014 | 1.1 | 1 | 0.8 |
Table 3 Material model parameters of titanium flyer
ρTi/(kg·m-3) | E Ti/GPa | G Ti/GPa | PR Ti | A Ti/GPa | B Ti |
---|---|---|---|---|---|
4510 | 113.76 | 43.75 | 0.3 | 1.098 | 1.092 |
N Ti | C Ti | M Ti | EPOS Ti/s-1 | D1 | |
0.93 | 0.014 | 1.1 | 1 | 0.8 |
CTi,EOS/(m·s-1) | S1,Ti | S2,Ti | S3,Ti | GANNA0 | ATi,EOS |
---|---|---|---|---|---|
4695 | 4.15 | 0 | 0 | 2.04 | 0.4 |
Table 4 Equation of state parameters of titanium flyer
CTi,EOS/(m·s-1) | S1,Ti | S2,Ti | S3,Ti | GANNA0 | ATi,EOS |
---|---|---|---|---|---|
4695 | 4.15 | 0 | 0 | 2.04 | 0.4 |
ρHNS-IV/(kg·m-3) | GHNS-IV/GPa | SIGYHNS-IV/GPa |
---|---|---|
1 600 | 3.54 | 0.2 |
Table 5 Material model parameters of HNS-IV
ρHNS-IV/(kg·m-3) | GHNS-IV/GPa | SIGYHNS-IV/GPa |
---|---|---|
1 600 | 3.54 | 0.2 |
AHNS-IV | BHNS-IV | XP1 | XP2 | FRER | GHNS-IV | R1HNS-IV | R2HNS-IV | R3HNS-IV | FMXGR |
---|---|---|---|---|---|---|---|---|---|
5.3625 | 0.2702 | 5.4 | 1.8 | 0.667 | 4.5×10-6 | 331.8 | -0.025 | 1.535×10-5 | 1 |
R5 | R6 | FMXIG | FREQ | GROW1 | EM | AR1 | ES1 | CVP | FMNGR |
11.5 | 1.15 | 0.08 | 1.4×106 | 0 | 2 | 0.667 | 0.667 | 1×10-5 | 0 |
CVR | EETAL | CCRIT | ENQ | TMP0 | GROW2 | ||||
2.7×10-5 | 4 | 0.2669 | 0 | 298 | 0 |
Table 6 Equation of state parameters of HNS-IV
AHNS-IV | BHNS-IV | XP1 | XP2 | FRER | GHNS-IV | R1HNS-IV | R2HNS-IV | R3HNS-IV | FMXGR |
---|---|---|---|---|---|---|---|---|---|
5.3625 | 0.2702 | 5.4 | 1.8 | 0.667 | 4.5×10-6 | 331.8 | -0.025 | 1.535×10-5 | 1 |
R5 | R6 | FMXIG | FREQ | GROW1 | EM | AR1 | ES1 | CVP | FMNGR |
11.5 | 1.15 | 0.08 | 1.4×106 | 0 | 2 | 0.667 | 0.667 | 1×10-5 | 0 |
CVR | EETAL | CCRIT | ENQ | TMP0 | GROW2 | ||||
2.7×10-5 | 4 | 0.2669 | 0 | 298 | 0 |
叠氮化铜尺寸/ mm | 叠氮化铜驱动飞片 冲击起爆HNS-IV | 叠氮化铜直接接触 起爆HNS-IV |
---|---|---|
飞片厚度/μm | 装配间隙/μm | |
ϕ0.8×0.5 | 25 | 0 |
50 | 20 |
Table 7 Design parameters of detonation transfer simulation model
叠氮化铜尺寸/ mm | 叠氮化铜驱动飞片 冲击起爆HNS-IV | 叠氮化铜直接接触 起爆HNS-IV |
---|---|---|
飞片厚度/μm | 装配间隙/μm | |
ϕ0.8×0.5 | 25 | 0 |
50 | 20 |
叠氮化铜 尺寸/mm | HNS-IV 尺寸/mm | 叠氮化铜驱动飞 片冲击起爆 HNS-IV | 叠氮化铜直接 起爆HNS-IV | ||
---|---|---|---|---|---|
飞片厚 度/μm | 是否 起爆 | 装配间 隙/μm | 是否 起爆 | ||
ϕ0.8×0.5 | ϕ2.5×1.5 | 25 | √ | 0 | √ |
50 | √ | 20 | × |
Table 8 Detonation simulation results
叠氮化铜 尺寸/mm | HNS-IV 尺寸/mm | 叠氮化铜驱动飞 片冲击起爆 HNS-IV | 叠氮化铜直接 起爆HNS-IV | ||
---|---|---|---|---|---|
飞片厚 度/μm | 是否 起爆 | 装配间 隙/μm | 是否 起爆 | ||
ϕ0.8×0.5 | ϕ2.5×1.5 | 25 | √ | 0 | √ |
50 | √ | 20 | × |
ρNi/(kg·m-3) | GNi/GPa | ANi/GPa | BNi | CNi |
---|---|---|---|---|
8874 | 8.55×1010 | 0.163 | 0.648 | 0.006 |
Table 9 Material model parameters of nickel
ρNi/(kg·m-3) | GNi/GPa | ANi/GPa | BNi | CNi |
---|---|---|---|---|
8874 | 8.55×1010 | 0.163 | 0.648 | 0.006 |
CNi,EOS/(m·s-1) | S1,Ni | GAMAONi |
---|---|---|
4 602 | 1.437 | 1.93 |
Table 10 Equation of state parameters of nickel
CNi,EOS/(m·s-1) | S1,Ni | GAMAONi |
---|---|---|
4 602 | 1.437 | 1.93 |
[1] |
李兵, 曾庆轩, 李明愉, 吴兴宇. “原位”合成铜叠氮化物的爆速测试[J]. 火工品, 2016(2):37-39.
|
|
|
[2] |
曾庆轩, 郑志猛, 李明愉, 等. 冲击片雷管集成制造方法研究[J]. 火工品, 2012(5):1-4.
|
|
|
[3] |
王冬昱. CL-20炸药降感机理的分子动力学计算分析[D]. 北京: 北京理工大学, 2016.
|
|
|
[4] |
刘卫, 褚恩义, 刘兰, 等. 基于飞片冲击起爆原理的微起爆序列技术研究进展[J]. 含能材料, 2023, 31(6):606-634.
|
|
|
[5] |
|
[6] |
刘杰, 王龙祥, 李青, 等. 钝感纳米RDX的制备与表征[J]. 火炸药学报, 2012, 35(6):46-50.
|
|
|
[7] |
|
[8] |
|
[9] |
|
[10] |
谭迎新, 张景林, 王桂吉, 等. 小飞片起爆系统加速膛参数的确定[J]. 火炸药学报, 2001, 24(3):51-52,55.
|
|
|
[11] |
简国祚, 曾庆轩, 郭俊峰, 等. 叠氮化铜微装药爆轰驱动飞片的数值模拟[J]. 爆炸与冲击, 2016, 36(2): 248-252.
|
|
|
[12] |
穆云飞. 微装药驱动飞片速度及形态研究[J]. 火工品, 2022 (6):9-13.
|
|
|
[13] |
郭俊峰, 曾庆轩, 李明愉, 等. 飞片材料对微装药驱动飞片形貌的影响[J]. 高压物理学报, 2017, 31(3):315-320.
|
|
|
[14] |
张良. 微装药驱动飞片传爆序列能量传递规律研究[D]. 北京: 北京理工大学, 2018.
|
|
|
[15] |
贺翔. 飞片式微型传爆序列能量传递规律及应用研究[D]. 北京: 北京理工大学, 2023.
|
|
|
[16] |
贺翔, 严楠, 曾祥涛, 等. 微尺寸叠氮化铅驱动飞片重要结构参数与飞片速度和能量的关系[J]. 兵工学报, 2021, 42(7): 1363-1371.
|
|
|
[17] |
贺翔, 杨立欣, 董海平, 等. 叠氮化铅驱动飞片起爆下级装药的试验研究[J]. 弹箭与制导学报, 2023, 43(1):63-69.
|
|
|
[18] |
解瑞珍, 陈建华, 刘卫, 等. 基于MEMS工艺的起爆序列设计研究[J]. 传感技术学报, 2021, 34(11):1451-1457.
|
|
|
[19] |
解瑞珍, 褚恩义, 戴旭涵, 等. 微起爆序列设计及传爆与隔爆性能[J]. 兵工学报, 2021, 42(6): 1178-1184.
doi: 10.3969/j.issn.1000-1093.2021.06.007 |
doi: 10.3969/j.issn.1000-1093.2021.06.007 |
|
[20] |
简国祚. 叠氮化铜微装药爆轰驱动飞片数值仿真研究[D]. 北京: 北京理工大学, 2015.
|
|
|
[21] |
刘荣强, 聂建新, 焦清介, 等. JO-9C小尺寸传爆药驱动飞片影响因素模拟仿真研究[J]. 兵工学报, 2020, 41(2): 246-253.
doi: 10.3969/j.issn.1000-1093.2020.02.005 |
|
|
[22] |
曾庆轩, 简国祚, 李兵, 等. 叠氮化铜JWL状态方程参数拟合[J]. 火工品, 2014(6): 28-31.
|
|
|
[23] |
门建兵, 蒋建伟, 王树有. 爆炸冲击数值模拟技术基础[M]. 北京: 北京理工大学出版社, 2015:137-141.
|
|
[1] | YANG Bing, WU Kaiwei, LIANG Yanbin, HAO Shijun, HUANG Zhonghua. Research on Echo Characteristics of Millimeter-wave Fuze under Heavy Rainfall Conditions Based on Monte Carlo Method [J]. Acta Armamentarii, 2024, 45(S1): 252-261. |
[2] | SHI Bo, CHEN Xi, LI Pengfei, HAN Ruoyu, QIN Sichao, HE Zhongzheng, SUN Haoyang. Ballistic Endpoint Ide.pngication Based on Projectile Rotation Characteristics and Fuze Full Ballistic Safety Control Method [J]. Acta Armamentarii, 2024, 45(9): 3105-3113. |
[3] | CHEN Baihan, ZHAO Shengwei, ZOU Huihui, WANG Weiguang, DAI Xianghui, WANG Kehui. Research Progress of Overload Signal Characteristics and Processing Technologies of Penetrating Projectile [J]. Acta Armamentarii, 2024, 45(9): 2906-2928. |
[4] | YUAN Hongwei, LI Haojie, DAI Keren, CHEN Hejuan, ZHANG He. Parameter Optimization Method of Fuzd Setting System Based on Harris Hawks Optimization Algorithm [J]. Acta Armamentarii, 2024, 45(8): 2594-2606. |
[5] | ZHOU Wen, HAO Xinhong, YANG Jin, DUAN Lefan. Response Characteristics of Frequency-modulated Continuous Wave Fuze under Dense Sweep Jamming [J]. Acta Armamentarii, 2024, 45(7): 2251-2259. |
[6] | ZHANG An, LI Changsheng, ZHANG He, MA Shaojie, YANG Benqiang. Experimental Study on IPM for Buffering and Energy Absorption [J]. Acta Armamentarii, 2024, 45(7): 2260-2269. |
[7] | LIU Bo, CHENG Xiangli, YANG He, ZHAO Hui, WU Xuexing, LIU Tao. Analysis of Load Characteristics of Fuze during Penetrating a Multi-layer Target Based on the Matching Relation of Projectile and Target [J]. Acta Armamentarii, 2024, 45(7): 2240-2250. |
[8] | CHEN Zhipeng, LI Haojie, YAN Bingqian, ZHANG Chuanhao, QIAO Shixiang, ZHANG He. Blasting Height Control Method of Millimeter Wave Proximity Fuze for Tank Gun Based on Data Setting [J]. Acta Armamentarii, 2024, 45(6): 2034-2043. |
[9] | YANG Jin, HAO Xinhong, QAO Caixia, CHEN Qile. Research on Anti-frequency Sweeping Jamming Method for Frequency-modulated Fuze Based on Sparse Recovery [J]. Acta Armamentarii, 2024, 45(6): 2044-2053. |
[10] | WANG Yili, LI Changsheng, WANG Xin, ZHANG He, WANG Xiaofeng. A Layer Counting Method for Penetration Fuze Based on Magnetic Anomaly Detection [J]. Acta Armamentarii, 2024, 45(3): 695-704. |
[11] | LOU Wenzhong, HE Bo, FENG Hengzhen, LI Xinzhe, YANG Tingqi, SU Wenting, LÜ Sining, ZHANG Mingrong, YU Xuerui. Real-time Simulation of Terminal Air Defense Interception of Small Caliber Fixed Distance Air-burst Ammunition and Research on the Opening Distance [J]. Acta Armamentarii, 2024, 45(2): 584-593. |
[12] | ZHAO Hui, CHENG Xiangli, LIU Jun, LIU Bo, WU Xuexing. Analysis of Loading Characteristics of Penetrating Warhead on Fuze in Wide Frequency Domain [J]. Acta Armamentarii, 2024, 45(10): 3696-3705. |
[13] | LI Hao, LI Haojie, YUAN Hongwei, YUE Zhonghao, MA Haitao. Influence of Distributed Capacitance on Information Transmission Characteristics of Collinear Setting System of Fuze and Its Optimization [J]. Acta Armamentarii, 2024, 45(1): 319-327. |
[14] | WANG Xinwei, YAN Xiaopeng, HAO Xinhong, CHEN Qile, HUANG Dingkun. A High Resolution DOA Method Based on Synthetic Virtual Array for Pulse Doppler Fuze [J]. Acta Armamentarii, 2024, 45(1): 97-104. |
[15] | LIU Bing, HAO Xinhong, ZHOU Wen, YANG Jin. Recognition Method of Target and Sweep Jamming Signal for FM Radio Fuze Based on BAS-BPNN [J]. Acta Armamentarii, 2023, 44(8): 2391-2403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||