Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (10): 3696-3705.doi: 10.12382/bgxb.2023.0736
Previous Articles Next Articles
ZHAO Hui, CHENG Xiangli*(), LIU Jun, LIU Bo, WU Xuexing
Received:
2023-08-09
Online:
2024-03-06
Contact:
CHENG Xiangli
CLC Number:
ZHAO Hui, CHENG Xiangli, LIU Jun, LIU Bo, WU Xuexing. Analysis of Loading Characteristics of Penetrating Warhead on Fuze in Wide Frequency Domain[J]. Acta Armamentarii, 2024, 45(10): 3696-3705.
Add to citation manager EndNote|Ris|BibTeX
类型 | 弹径/m | 弹长/m | 长径比 | 弹头系数 |
---|---|---|---|---|
小型战斗部 | 0.18 | 1.05 | 5.83 | 2.2 |
大型战斗部 | 0.41 | 2.56 | 6.24 | 2.6 |
Table 1 Parameters of warhead
类型 | 弹径/m | 弹长/m | 长径比 | 弹头系数 |
---|---|---|---|---|
小型战斗部 | 0.18 | 1.05 | 5.83 | 2.2 |
大型战斗部 | 0.41 | 2.56 | 6.24 | 2.6 |
组件 | 密度/(kg·m-3) | 弹性模量/GPa | 泊松比 |
---|---|---|---|
壳体 | 7750 | 210 | 0.31 |
主装药 | 1680 | 6.0 | 0.38 |
后端盖 | 4500 | 110 | 0.34 |
引信 | 4500 | 110 | 0.34 |
Table 2 Material parameters for projectile simulation
组件 | 密度/(kg·m-3) | 弹性模量/GPa | 泊松比 |
---|---|---|---|
壳体 | 7750 | 210 | 0.31 |
主装药 | 1680 | 6.0 | 0.38 |
后端盖 | 4500 | 110 | 0.34 |
引信 | 4500 | 110 | 0.34 |
材料 | 密度/ (g·cm-3) | 屈服强度/ MPa | 泊松比 | 弹性模量/ GPa |
---|---|---|---|---|
弹体 | 7.85 | 1590 | 0.28 | 210 |
装药 | 1.84 | 16.2 | 0.38 | 3.05 |
后端盖 | 4.50 | 825 | 0.34 | 110 |
引信 | 4.50 | 825 | 0.34 | 110 |
Table 3 Main parameters ofwarhead model
材料 | 密度/ (g·cm-3) | 屈服强度/ MPa | 泊松比 | 弹性模量/ GPa |
---|---|---|---|---|
弹体 | 7.85 | 1590 | 0.28 | 210 |
装药 | 1.84 | 16.2 | 0.38 | 3.05 |
后端盖 | 4.50 | 825 | 0.34 | 110 |
引信 | 4.50 | 825 | 0.34 | 110 |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(kg·m-3) | 2440 | SFmax | 7 |
G/GPa | 14.86 | pc/GPa | 0.016 |
A | 0.79 | μc | 0.001 |
B | 1.6 | pL/GPa | 0.8 |
C | 0.007 | μL | 0.1 |
N | 0.61 | D1 | 0.04 |
fc/GPa | 0.048 | D2 | 1 |
T/GPa | 0.004 | K1/GPa | 85 |
EPs0/s-1 | 1 | K2/GPa | -171 |
EFmin | 0.01 | K3/GPa | 208 |
Table 4 HJC model parameters of concrete
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
ρ/(kg·m-3) | 2440 | SFmax | 7 |
G/GPa | 14.86 | pc/GPa | 0.016 |
A | 0.79 | μc | 0.001 |
B | 1.6 | pL/GPa | 0.8 |
C | 0.007 | μL | 0.1 |
N | 0.61 | D1 | 0.04 |
fc/GPa | 0.048 | D2 | 1 |
T/GPa | 0.004 | K1/GPa | 85 |
EPs0/s-1 | 1 | K2/GPa | -171 |
EFmin | 0.01 | K3/GPa | 208 |
战斗部 | 靶标 | 过载峰值/104g | 放大倍数 | |
---|---|---|---|---|
弹体 | 引信 | |||
小型战斗部 | 2.5m厚靶 | 2.06 | 4.16 | 2.02 |
5层建筑楼板 | 1.22 | 3.4 | 2.78 | |
大型战斗部 | 2.5m厚靶 | 0.61 | 1.38 | 2.26 |
5层建筑楼板 | 0.59 | 2.33 | 3.95 |
Table 5 Acceleration peak value and magnification
战斗部 | 靶标 | 过载峰值/104g | 放大倍数 | |
---|---|---|---|---|
弹体 | 引信 | |||
小型战斗部 | 2.5m厚靶 | 2.06 | 4.16 | 2.02 |
5层建筑楼板 | 1.22 | 3.4 | 2.78 | |
大型战斗部 | 2.5m厚靶 | 0.61 | 1.38 | 2.26 |
5层建筑楼板 | 0.59 | 2.33 | 3.95 |
计算类型 | 大型战斗部 | 小型战斗部 |
---|---|---|
谐响应分析 | 970 | 2400 |
瞬态响应理论计算 | 1000 | 2400 |
瞬态响应仿真分析 | 1000 | 2400 |
弹靶作用响应分析 | 1000 | 2462 |
Table 6 Frequency spectrum energy concentrated band of fuze accelerationHz
计算类型 | 大型战斗部 | 小型战斗部 |
---|---|---|
谐响应分析 | 970 | 2400 |
瞬态响应理论计算 | 1000 | 2400 |
瞬态响应仿真分析 | 1000 | 2400 |
弹靶作用响应分析 | 1000 | 2462 |
[1] |
张冬梅, 高世桥, 李世中. 侵彻过程中弹引系统的冲击传递特性研究[J]. 兵器装备工程学报, 2020, 41(12): 27-34.
|
|
|
[2] |
孙倩华, 庄凌, 薛再清. 基于混凝土侵彻响应特性的空穴起爆控制方法[J]. 探测与控制学报, 2022, 44(5): 26-30.
|
|
|
[3] |
张雪岩, 武海军, 李金柱, 等. 弹体高速侵彻两种强度混凝土靶的对比研究[J]. 兵工学报, 2019, 40(2): 276-283.
doi: 10.3969/j.issn.1000-1093.2019.02.007 |
doi: 10.3969/j.issn.1000-1093.2019.02.007 |
|
[4] |
王艳. 抗高过载记录仪防护结构的设计及优化[D]. 太原: 中北大学, 2020.
|
|
|
[5] |
|
[6] |
|
[7] |
张锦明, 张合, 蔚达, 等. 不同固连结构弹引系统侵彻多层硬目标动态特性研究[J]. 兵器装备工程学报, 2022, 43(9): 186-192.
|
|
|
[8] |
程祥利, 刘波, 赵慧, 等. 侵彻战斗部-引信系统动力学建模与仿真[J]. 兵工学报, 2020, 41(4): 625-633.
doi: 10.3969/j.issn.1000-1093.2020.04.001 |
doi: 10.3969/j.issn.1000-1093.2020.04.001 |
|
[9] |
宋英燕. 弹引系统侵彻混凝土的动态特性研究[D]. 北京: 北京理工大学, 2017.
|
|
|
[10] |
张丁山, 谷鸿平, 吕永柱, 等. 战斗部后端盖结构强度的数值仿真及应力波分析方法[J]. 探测与控制学报, 2018, 40(5): 21-25.
|
|
|
[11] |
刘波, 杨黎明, 李东杰, 等. 侵彻弹体结构纵向振动频率特性分析[J]. 爆炸与冲击, 2018, 38(3): 677-682.
|
|
|
[12] |
程祥利, 赵慧, 李林川, 等. 基于机械振动理论的垂直侵彻弹靶作用模型[J]. 爆炸与冲击, 2019, 39(9): 1-10.
|
|
|
[13] |
杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性[J]. 兵工学报, 2021, 42(6): 1204-1214.
doi: 10.3969/j.issn.1000-1093.2021.06.010 |
doi: 10.3969/j.issn.1000-1093.2021.06.010 |
|
[14] |
王维占, 赵太勇, 冯顺山, 等. 12.7mm动能弹斜侵彻复合装甲的数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 78-87.
|
|
|
[15] |
郝爱国, 吉卫, 郝花蕾. G50超高强度钢热变形行为及本构关系研究[J]. 锻压装备与制造技术, 2020, 55(5): 124-128.
|
|
|
[16] |
孔庆强, 沈飞, 邢逸凡, 等. G50钢与G31钢动态力学性能的对比试验研究[J]. 高压物理学报, 2021, 35(1): 70-76.
|
|
|
[17] |
张立建, 郭洪卫, 吕永柱, 等. 两种侵彻载荷下装药结构动态响应特性数值模拟[J]. 现代防御技术, 2021, 49(5): 111-117.
doi: 10.3969/j.issn.1009-086x.2021.05.015 |
|
|
[18] |
张健东, 武海军, 李伟. 头部带肋板的异形结构弹体斜贯穿混凝土薄靶实验和数值模拟[J]. 高压物理学报, 2021, 35(6): 186-194.
|
|
|
[19] |
马孟新, 李蓉, 牛兰杰. 侵彻加速度信号目标特征中干扰叠加程度评价指标[J]. 兵工学报, 2022, 43(1): 20-28.
|
doi: 10.3969/j.issn.1000-1093.2022.01.003 |
|
[20] |
赵象润, 严楠, 郭崇星, 等. 金属橡胶隔振器对火工分离螺母冲击响应的影响[J]. 含能材料, 2021, 29(9): 848-854.
|
|
[1] | SHI Bo, CHEN Xi, LI Pengfei, HAN Ruoyu, QIN Sichao, HE Zhongzheng, SUN Haoyang. Ballistic Endpoint Ide.pngication Based on Projectile Rotation Characteristics and Fuze Full Ballistic Safety Control Method [J]. Acta Armamentarii, 2024, 45(9): 3105-3113. |
[2] | CHEN Baihan, ZHAO Shengwei, ZOU Huihui, WANG Weiguang, DAI Xianghui, WANG Kehui. Research Progress of Overload Signal Characteristics and Processing Technologies of Penetrating Projectile [J]. Acta Armamentarii, 2024, 45(9): 2906-2928. |
[3] | YUAN Hongwei, LI Haojie, DAI Keren, CHEN Hejuan, ZHANG He. Parameter Optimization Method of Fuzd Setting System Based on Harris Hawks Optimization Algorithm [J]. Acta Armamentarii, 2024, 45(8): 2594-2606. |
[4] | ZHOU Wen, HAO Xinhong, YANG Jin, DUAN Lefan. Response Characteristics of Frequency-modulated Continuous Wave Fuze under Dense Sweep Jamming [J]. Acta Armamentarii, 2024, 45(7): 2251-2259. |
[5] | ZHANG An, LI Changsheng, ZHANG He, MA Shaojie, YANG Benqiang. Experimental Study on IPM for Buffering and Energy Absorption [J]. Acta Armamentarii, 2024, 45(7): 2260-2269. |
[6] | LIU Bo, CHENG Xiangli, YANG He, ZHAO Hui, WU Xuexing, LIU Tao. Analysis of Load Characteristics of Fuze during Penetrating a Multi-layer Target Based on the Matching Relation of Projectile and Target [J]. Acta Armamentarii, 2024, 45(7): 2240-2250. |
[7] | CHEN Zhipeng, LI Haojie, YAN Bingqian, ZHANG Chuanhao, QIAO Shixiang, ZHANG He. Blasting Height Control Method of Millimeter Wave Proximity Fuze for Tank Gun Based on Data Setting [J]. Acta Armamentarii, 2024, 45(6): 2034-2043. |
[8] | YANG Jin, HAO Xinhong, QAO Caixia, CHEN Qile. Research on Anti-frequency Sweeping Jamming Method for Frequency-modulated Fuze Based on Sparse Recovery [J]. Acta Armamentarii, 2024, 45(6): 2044-2053. |
[9] | WANG Yili, LI Changsheng, WANG Xin, ZHANG He, WANG Xiaofeng. A Layer Counting Method for Penetration Fuze Based on Magnetic Anomaly Detection [J]. Acta Armamentarii, 2024, 45(3): 695-704. |
[10] | LOU Wenzhong, HE Bo, FENG Hengzhen, LI Xinzhe, YANG Tingqi, SU Wenting, LÜ Sining, ZHANG Mingrong, YU Xuerui. Real-time Simulation of Terminal Air Defense Interception of Small Caliber Fixed Distance Air-burst Ammunition and Research on the Opening Distance [J]. Acta Armamentarii, 2024, 45(2): 584-593. |
[11] | LI Hao, LI Haojie, YUAN Hongwei, YUE Zhonghao, MA Haitao. Influence of Distributed Capacitance on Information Transmission Characteristics of Collinear Setting System of Fuze and Its Optimization [J]. Acta Armamentarii, 2024, 45(1): 319-327. |
[12] | WANG Xinwei, YAN Xiaopeng, HAO Xinhong, CHEN Qile, HUANG Dingkun. A High Resolution DOA Method Based on Synthetic Virtual Array for Pulse Doppler Fuze [J]. Acta Armamentarii, 2024, 45(1): 97-104. |
[13] | LIU Bing, HAO Xinhong, ZHOU Wen, YANG Jin. Recognition Method of Target and Sweep Jamming Signal for FM Radio Fuze Based on BAS-BPNN [J]. Acta Armamentarii, 2023, 44(8): 2391-2403. |
[14] | ZHOU Wen, HAO Xinhong, DONG Erwa, CHEN Yanjun. Anti-Frequency Sweeping Jamming Method for FM Fuze Using Sliding Multi-cycle FFT [J]. Acta Armamentarii, 2023, 44(6): 1744-1753. |
[15] | LIU Weizhao, LI Rong, NIU Lanjie, SHI Kunlin. Research Status and Prospect of Hard-Target Penetration Initiation Control Technology [J]. Acta Armamentarii, 2023, 44(6): 1602-1619. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||