Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (9): 3216-3229.doi: 10.12382/bgxb.2023.0575
Previous Articles Next Articles
Received:
2023-06-12
Online:
2023-09-18
Contact:
CHEN Qi
CLC Number:
CHEN Qi, QIN Guoyang. Trajectory Tracking Control for Hybrid-driven Unmanned Underwater Vehicles with Free-flying and Crawling Dual-mode[J]. Acta Armamentarii, 2024, 45(9): 3216-3229.
Add to citation manager EndNote|Ris|BibTeX
S | NB | NM | NS | ZE | PS | PM | PB |
---|---|---|---|---|---|---|---|
K | PB | PM | PS | ZE | NS | NM | NB |
L | PB | PB | PS | PM | PS | PS | PS |
Table 1 Fuzzy control rule
S | NB | NM | NS | ZE | PS | PM | PB |
---|---|---|---|---|---|---|---|
K | PB | PM | PS | ZE | NS | NM | NB |
L | PB | PB | PS | PM | PS | PS | PS |
函数 | 表达式 | 维度 | 取值范围 | 最小值 |
---|---|---|---|---|
F1 | F(x)= | 30 | [-100,100] | 0 |
F2 | F(x)= {|xi|,1≤i≤D} | 30 | [-100,100] | 0 |
F3 | F(x)= [ -10cos (2πxi)+10] | 30 | [-5.12,5.12] | 0 |
F4 | $F(x)=-20 \exp \left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_{i}^{2}}\right)-\exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos \left(2 \pi x_{i}\right)\right)+20+e$ | 30 | [-32,32] | 0 |
Table 2 Standard test function
函数 | 表达式 | 维度 | 取值范围 | 最小值 |
---|---|---|---|---|
F1 | F(x)= | 30 | [-100,100] | 0 |
F2 | F(x)= {|xi|,1≤i≤D} | 30 | [-100,100] | 0 |
F3 | F(x)= [ -10cos (2πxi)+10] | 30 | [-5.12,5.12] | 0 |
F4 | $F(x)=-20 \exp \left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_{i}^{2}}\right)-\exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos \left(2 \pi x_{i}\right)\right)+20+e$ | 30 | [-32,32] | 0 |
函数 | GWO | EGWO1 | EGWO2 | IGWO | ||||
---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
F1 | 9.8207×10-19 | 8.7469×10-19 | 1.5871×10-23 | 8.1979×10-24 | 1.0664×10-29 | 2.1005×10-29 | 8.1052×10-36 | 2.5631×10-35 |
F2 | 4.1946×10-05 | 2.0654×10-05 | 8.2416×10-07 | 3.9997×10-07 | 1.0228×10-08 | 7.8674×10-09 | 1.1079×10-11 | 3.4305×10-11 |
F3 | 6.5767 | 5.9961 | 1.3252 | 2.8940 | 1.1637 | 2.6976 | 0 | 0 |
F4 | 1.5696×10-10 | 6.4676×10-11 | 1.0671×10-12 | 8.2545×10-13 | 3.0376×10-14 | 2.3979×10-15 | 8.8800×10-16 | 0 |
Table 3 Comparison of optimizated results of different algorithms
函数 | GWO | EGWO1 | EGWO2 | IGWO | ||||
---|---|---|---|---|---|---|---|---|
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
F1 | 9.8207×10-19 | 8.7469×10-19 | 1.5871×10-23 | 8.1979×10-24 | 1.0664×10-29 | 2.1005×10-29 | 8.1052×10-36 | 2.5631×10-35 |
F2 | 4.1946×10-05 | 2.0654×10-05 | 8.2416×10-07 | 3.9997×10-07 | 1.0228×10-08 | 7.8674×10-09 | 1.1079×10-11 | 3.4305×10-11 |
F3 | 6.5767 | 5.9961 | 1.3252 | 2.8940 | 1.1637 | 2.6976 | 0 | 0 |
F4 | 1.5696×10-10 | 6.4676×10-11 | 1.0671×10-12 | 8.2545×10-13 | 3.0376×10-14 | 2.3979×10-15 | 8.8800×10-16 | 0 |
控制器 | x平均 误差/m | y平均 误差/m | z平均 误差/m | 平均 值/m | 方差/ m |
---|---|---|---|---|---|
MPC | 0.5497 | 0.6211 | 0.2169 | 0.4626 | 0.0466 |
GWO-MPC | 0.3175 | 0.3960 | 0.1781 | 0.2972 | 0.0122 |
EGWO1-MPC | 0.3306 | 0.4003 | 0.1810 | 0.2988 | 0.0122 |
EGWO2-MPC | 0.3177 | 0.4240 | 0.1982 | 0.3133 | 0.0128 |
IGWO-MPC | 0.3007 | 0.3280 | 0.1463 | 0.2583 | 0.0096 |
Table 4 Trajectory tracking results of different controllers
控制器 | x平均 误差/m | y平均 误差/m | z平均 误差/m | 平均 值/m | 方差/ m |
---|---|---|---|---|---|
MPC | 0.5497 | 0.6211 | 0.2169 | 0.4626 | 0.0466 |
GWO-MPC | 0.3175 | 0.3960 | 0.1781 | 0.2972 | 0.0122 |
EGWO1-MPC | 0.3306 | 0.4003 | 0.1810 | 0.2988 | 0.0122 |
EGWO2-MPC | 0.3177 | 0.4240 | 0.1982 | 0.3133 | 0.0128 |
IGWO-MPC | 0.3007 | 0.3280 | 0.1463 | 0.2583 | 0.0096 |
控制器 | xm稳态误差/m | ym稳态误差/m | 平均稳态 误差/m | 方差/m | xm收敛 时间/s | ym收敛 时间/s | θm收敛 时间/s | 平均收敛 时间/s |
---|---|---|---|---|---|---|---|---|
SMC | 0.0361 | 0.0042 | 0.0403 | 5.0881×10-4 | 4.9 | 4.8 | 0 | 3.2 |
TSMC | 2.3196×10-15 | 1.5625×10-16 | 1.9411×10-16 | 2.3400×10-30 | 1.7 | 1.5 | 1.8 | 1.7 |
BSMC | 6.3116×10-04 | 2.2597×10-04 | 4.2857×10-04 | 8.2089×10-08 | 4.8 | 2.3 | 4.7 | 3.9 |
FSMC | 4.1125×10-19 | 4.2774×10-19 | 4.1950×10-19 | 1.3596×10-40 | 0.8 | 0.9 | 1.1 | 0.9 |
Table 5 Trajectory tracking results of different controllers
控制器 | xm稳态误差/m | ym稳态误差/m | 平均稳态 误差/m | 方差/m | xm收敛 时间/s | ym收敛 时间/s | θm收敛 时间/s | 平均收敛 时间/s |
---|---|---|---|---|---|---|---|---|
SMC | 0.0361 | 0.0042 | 0.0403 | 5.0881×10-4 | 4.9 | 4.8 | 0 | 3.2 |
TSMC | 2.3196×10-15 | 1.5625×10-16 | 1.9411×10-16 | 2.3400×10-30 | 1.7 | 1.5 | 1.8 | 1.7 |
BSMC | 6.3116×10-04 | 2.2597×10-04 | 4.2857×10-04 | 8.2089×10-08 | 4.8 | 2.3 | 4.7 | 3.9 |
FSMC | 4.1125×10-19 | 4.2774×10-19 | 4.1950×10-19 | 1.3596×10-40 | 0.8 | 0.9 | 1.1 | 0.9 |
[1] |
郑佩阳. 水下双模作业机器人系统设计与实验研究[D]. 杭州: 浙江大学, 2022.
|
|
|
[2] |
|
[3] |
|
[4] |
邸青, 周竞烨, 方凯, 等. 基于模型参数不确定的欠驱动非对称自主水下航行器全局镇定控制研究[J]. 兵工学报, 2020, 41(5): 950-957.
doi: 10.3969/j.issn.1000-1093.2020.05.014 |
doi: 10.3969/j.issn.1000-1093.2020.05.014 |
|
[5] |
梅满, 朱大奇, 甘文洋, 等. 基于模型预测控制的水下机器人轨迹跟踪[J]. 控制工程, 2019, 26(10): 1917-1924.
|
|
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
孔慧芳, 丁道远, 房耀. 基于干扰观测器的移动机器人路径跟踪控制[J]. 电光与控制, 2021, 28(12): 91-96.
|
|
|
[11] |
刘杰超, 邓琛, 丁大民, 等. 基于MPLM-RBFNN算法的移动机器人姿态控制方法[J]. 传感器与微系统, 2020, 39(3): 68-71.
|
|
|
[12] |
赖欣, 李嘉禾, 彭天宇, 等. 爬壁机器人固定/有限时间滑模轨迹跟踪控制研究[J]. 机械科学与技术, 2022, 41(7): 1085-1094.
|
|
|
[13] |
龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014: 45-48.
|
|
|
[14] |
|
[15] |
史振庆, 梁晓龙, 张佳强, 等. 基于协同攻击区的航空集群最优空间构型研究[J]. 兵工学报, 2019, 40(4): 788-798.
doi: 10.3969/j.issn.1000-1093.2019.04.014 |
|
|
[16] |
|
[17] |
|
[18] |
梁恒辉. 基于改进差分进化算法的永磁同步电机分数阶建模与应用[D]. 佛山: 佛山科学技术学院, 2021.
|
|
|
[19] |
陈贞, 闫明晗. 一种改进的灰狼优化算法[J]. 延边大学学报(自然科学版), 2022, 48(3): 250-254.
|
|
|
[20] |
王正通, 程凤芹, 尤文, 等. 基于改进灰狼优化算法的校园电采暖软启动应用[J]. 现代电子技术, 2021, 44(3): 167-171.
|
|
|
[21] |
高雨轩, 侯远龙, 高强, 等. 机载光电跟踪系统的自抗扰与快速非奇异终端滑模组合控制方法[J]. 兵工学报, 2023, 44(4): 1071-1085.
|
doi: 10.12382/bgxb.2022.0890 |
|
[22] |
吴卫国, 陈辉堂, 王月娟. 移动机器人的全局轨迹跟踪控制[J]. 自动化学报, 2001, 27(3): 326-331.
|
|
|
[23] |
刘钰. 基于神经网络的轮式移动机器人鲁棒滑模控制[D]. 南京: 南京理工大学, 2008.
|
|
|
[24] |
严春满, 陈佳辉, 马芸婷, 等. 改进灰狼优化算法及其在QR码识别上的应用[J]. 激光与光电子学进展, 2020, 57(2): 170-177.
|
|
|
[25] |
宋玉生, 刘光宇, 朱凌, 等. 改进的灰狼优化算法在SVM参数优化中的应用[J]. 传感器与微系统, 2022, 41(9): 151-155.
|
|
|
[26] |
张扬名, 刘国荣, 杨小亮. 基于滑模变结构的移动机器人轨迹跟踪控制[J]. 计算机工程, 2013, 39(5): 160-164.
doi: 10.3969/j.issn.1000-3428.2013.05.035 |
|
|
[27] |
|
[28] |
匡文龙, 沈文龙, 姬长英, 等. 农用履带机器人轨迹跟踪控制系统设计与试验[J]. 东北农业大学学报, 2020, 51(4): 78-87.
|
|
[1] | LIN Yubin, HOU Baolin, BAO Dan, ZHAO Wei. Implicit Lyapunov Function-based Variable Gain Super-twisting Sliding Mode Control of an Ammunition Transfer Manipulator [J]. Acta Armamentarii, 2024, 45(8): 2573-2583. |
[2] | ZHAO Xinyun, YU Jianqiao. Dynamic Modeling and Attitude Control for Novel Agile Projectile [J]. Acta Armamentarii, 2024, 45(7): 2182-2196. |
[3] | LIN Zhonglin, WANG Haitao, LIU Wenchao, GAN Jinyu, ZHANG Tianhong, HUANG Feng. Aero-engine Compressor Pressure Simulation Method Based on Multi-mode Acceleration and Backstepping Sliding Mode [J]. Acta Armamentarii, 2024, 45(6): 1776-1786. |
[4] | LIU Jiangtao, ZHOU Lelai, LI Yibin. Trajectory Tracking and Obstacle Avoidance Control of Six-wheel Independent Drive and Steering Robot in Complex Terrain [J]. Acta Armamentarii, 2024, 45(1): 166-183. |
[5] | DING Wengjun, ZHANG Guozong, LIU Haimin, CHAI Yajun, WANG Chiyu, MAO Zhaoyong. Tracking Control of Underactuated Autonomous Underwater Vehicle Formation under Current Disturbance and Communication Delay [J]. Acta Armamentarii, 2024, 45(1): 184-196. |
[6] | XU Peng, XING Boyang, LIU Yufei, LI Yongyao, ZENG Yi, ZHENG Dongdong. Anti-disturbance Composite Controller Design of Quadruped Robot Based on Extended State Observer and Model Predictive Control Technique [J]. Acta Armamentarii, 2023, 44(S2): 12-21. |
[7] | XU Peng, ZHAO Jianxin, FAN Wenhui, QIU Tianqi, JIANG Lei, LIANG Zhenjie, LIU Yufei. Specific Complex Locomotion Skills Control for Quadruped Robots [J]. Acta Armamentarii, 2023, 44(S2): 135-145. |
[8] | LI Caoyan, GUO Zhenchuan, ZHENG Dongdong, WEI Yanling. Multi-robot Cooperative Formation Based on Distributed Model Predictive Control [J]. Acta Armamentarii, 2023, 44(S2): 178-190. |
[9] | WANG Zhilin, WANG Jiang, QI Qi, FAN Shipeng. Novel Adaptive Robust Roll Control Method Based on LESO [J]. Acta Armamentarii, 2023, 44(7): 1920-1929. |
[10] | WANG Xuemin, YU Hongbo, ZHANG Xiangyu, AN Shu, LI Wenhai. Underwater Multi-target Detection Method Based on Hough Transform Track-before-detect Technique [J]. Acta Armamentarii, 2023, 44(7): 2114-2121. |
[11] | LU Jiaxing, LIU Haiou, GUAN Haijie, LI Derun, CHEN Huiyan, LIU Longlong. Trajectory Tracking Control of Unmanned Tracked Vehicles Based on Adaptive Dual-Parameter Optimization [J]. Acta Armamentarii, 2023, 44(4): 960-971. |
[12] | GAO Yuxuan, HOU Yuanlong, GAO Qiang, HOU Runmin. Compound Control Method of ADRC and FNTSM for Airborne Object Tracking System [J]. Acta Armamentarii, 2023, 44(4): 1071-1085. |
[13] | ZHANG Tian, JIN Shuxin, WANG Qiang, DUAN Xiaobo, LIU Tiecheng, NIU Haitao, HOU Zeng, YANG Yi, LIU Tong. High-Sensitivity Follow-up Control Technology Based on Micro-Inertial Sensors [J]. Acta Armamentarii, 2023, 44(2): 566-576. |
[14] | DONG Jinlu, MA Yuemeng, ZHOU Di, GONG Xiaogang, ZHANG Xi, SONG Jiahong. A Composite Sliding Mode Control Scheme Based on Reaction Jets and Flaps for Near-Space Hypersonic Vehicles [J]. Acta Armamentarii, 2023, 44(2): 496-506. |
[15] | JIANG Yan, DING Yuyan, ZHANG Xinglong, XU Xin. A Human-machine Collaborative Control Algorithm for Intelligent Vehicles Based on Model Prediction and Policy Learning [J]. Acta Armamentarii, 2023, 44(11): 3465-3477. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||