Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (4): 1344-1353.doi: 10.12382/bgxb.2022.0786
Previous Articles Next Articles
LIN Sen*(), WANG Jingang, GAO Hongwei
Received:
2022-09-07
Online:
2024-04-30
Contact:
LIN Sen
CLC Number:
LIN Sen, WANG Jingang, GAO Hongwei. Battlefield Image Dehazing Based on Global Compensation Attention Mechanism[J]. Acta Armamentarii, 2024, 45(4): 1344-1353.
Add to citation manager EndNote|Ris|BibTeX
卷积层 | 结构 | 输入通道数 | 输出通道数 | 输出大小 |
---|---|---|---|---|
Conv1_1 | 3×3 | 64 | 64 | 246×246 |
Conv1_2 | 3×3 | 128 | 128 | 246×246 |
Conv1_3 | 3×3 | 256 | 256 | 246×246 |
Conv1_4 | 3×3 | 512 | 64 | 246×246 |
Conv2 | 1×1 | 64 | 64 | 1×1 |
Conv3_1 | 3×3 | 64 | 1 | 246×246 |
Conv3_2 | 3×3 | 1 | 1 | 246×246 |
Conv3_3 | 3×3 | 1 | 64 | 246×246 |
Table 1 Internal parameters of the module
卷积层 | 结构 | 输入通道数 | 输出通道数 | 输出大小 |
---|---|---|---|---|
Conv1_1 | 3×3 | 64 | 64 | 246×246 |
Conv1_2 | 3×3 | 128 | 128 | 246×246 |
Conv1_3 | 3×3 | 256 | 256 | 246×246 |
Conv1_4 | 3×3 | 512 | 64 | 246×246 |
Conv2 | 1×1 | 64 | 64 | 1×1 |
Conv3_1 | 3×3 | 64 | 1 | 246×246 |
Conv3_2 | 3×3 | 1 | 1 | 246×246 |
Conv3_3 | 3×3 | 1 | 64 | 246×246 |
方法 | CIEDE2000↓ |
---|---|
DCP方法 | 18.11 |
CEEF方法 | 21.59 |
DehazeNet方法 | 21.41 |
RefineDNet方法 | 17.69 |
本文方法 | 17.12 |
Table 2 Experimental results of CIEDE2000 color card
方法 | CIEDE2000↓ |
---|---|
DCP方法 | 18.11 |
CEEF方法 | 21.59 |
DehazeNet方法 | 21.41 |
RefineDNet方法 | 17.69 |
本文方法 | 17.12 |
方法 | SSIM↑ | PSNR↑ | MSE↓ | SNR↑ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
outdoor | indoor | synthetic | outdoor | indoor | synthetic | outdoor | indoor | synthetic | outdoor | indoor | synthetic | |
DCP方法 | 0.61 | 0.54 | 0.77 | 11.65 | 12.95 | 16.65 | 1708.67 | 3350.46 | 1668.58 | 9.81 | 5.97 | 9.98 |
CEEF方法 | 0.62 | 0.52 | 0.76 | 14.41 | 12.80 | 16.72 | 1661.07 | 3475.57 | 1556.13 | 9.33 | 6.90 | 9.96 |
DehazeNet方法 | 0.88 | 0.53 | 0.88 | 22.93 | 12.86 | 23.95 | 416.86 | 3455.18 | 300.03 | 17.53 | 5.86 | 18.81 |
RefineDNet方法 | 0.92 | 0.58 | 0.86 | 20.93 | 12.76 | 20.67 | 686.45 | 3507.52 | 640.92 | 14.42 | 6.86 | 15.53 |
本文方法 | 0.90 | 0.59 | 0.88 | 25.15 | 15.45 | 25.77 | 265.84 | 2974.61 | 209.19 | 19.75 | 7.56 | 20.90 |
Table 5 Test results of different methods on different datasets
方法 | SSIM↑ | PSNR↑ | MSE↓ | SNR↑ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
outdoor | indoor | synthetic | outdoor | indoor | synthetic | outdoor | indoor | synthetic | outdoor | indoor | synthetic | |
DCP方法 | 0.61 | 0.54 | 0.77 | 11.65 | 12.95 | 16.65 | 1708.67 | 3350.46 | 1668.58 | 9.81 | 5.97 | 9.98 |
CEEF方法 | 0.62 | 0.52 | 0.76 | 14.41 | 12.80 | 16.72 | 1661.07 | 3475.57 | 1556.13 | 9.33 | 6.90 | 9.96 |
DehazeNet方法 | 0.88 | 0.53 | 0.88 | 22.93 | 12.86 | 23.95 | 416.86 | 3455.18 | 300.03 | 17.53 | 5.86 | 18.81 |
RefineDNet方法 | 0.92 | 0.58 | 0.86 | 20.93 | 12.76 | 20.67 | 686.45 | 3507.52 | 640.92 | 14.42 | 6.86 | 15.53 |
本文方法 | 0.90 | 0.59 | 0.88 | 25.15 | 15.45 | 25.77 | 265.84 | 2974.61 | 209.19 | 19.75 | 7.56 | 20.90 |
图像大小 | DCP 方法 | CEEF 方法 | DehazeNet 方法 | RefineDNet 方法 | 本文方法 |
---|---|---|---|---|---|
256×256 | 2.849 | 0.115 | 0.273 | 0.098 | 0.055 |
512×512 | 11.821 | 0.542 | 1.267 | 0.320 | 0.174 |
Table 6 Running time of different methodss
图像大小 | DCP 方法 | CEEF 方法 | DehazeNet 方法 | RefineDNet 方法 | 本文方法 |
---|---|---|---|---|---|
256×256 | 2.849 | 0.115 | 0.273 | 0.098 | 0.055 |
512×512 | 11.821 | 0.542 | 1.267 | 0.320 | 0.174 |
[1] |
蒋超, 崔玉伟, 王辉. 基于图像的无人机战场态势感知技术综述[J]. 测控技术, 2021, 40(12):14-19.
|
|
|
[2] |
秦朝轩, 顾晓辉. 基于双边分解与L_1暗通道的战场图像增强算法[J]. 控制与决策, 2021, 36(5): 1165-1172.
|
|
|
[3] |
doi: 10.1109/TPAMI.2010.168 pmid: 20820075 |
[4] |
李春明, 姜雨彤, 宋海平, 等. 基于光学厚度代理模型的雾浓度估计及图像去雾[J]. 兵工学报, 2019, 40(7):1425-1433.
doi: 10.3969/j.issn.1000-1093.2019.07.012 |
|
|
[5] |
doi: 10.1109/TIP.2015.2446191 pmid: 26099141 |
[6] |
|
[7] |
|
[8] |
|
[9] |
doi: 10.1109/TIP.2016.2598681 pmid: 28873058 |
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
姜雨彤, 宋海平, 王光辉. 基于质量评价最优的无人机航拍图像去雾方法[J]. 兵工学报, 2022, 43(1):148-158.
doi: 10.3969/j.issn.1000-1093.2022.01.016 |
|
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
doi: 10.1111/jerd.12689 pmid: 33283966 |
[22] |
李静, 刘哲, 黄文准. 基于快速非局部均值和超分辨率重建的图像降噪算法[J]. 兵工学报, 2021, 42(8):1716-1727.
|
doi: 10.3969/j.issn.1000-1093.2021.08.016 |
|
[23] |
|
[24] |
|
[25] |
顾德英, 罗聿伦, 李文超. 基于改进YOLOv5算法的复杂场景交通目标检测[J]. 东北大学学报(自然科学版), 2022, 43(8):1073-1079.
doi: 10.12068/j.issn.1005-3026.2022.08.002 |
|
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
刘琼, 严由嵘, 张旭, 等. 基于动态小波亚像素配准的战场遥感识别仿真[J]. 计算机仿真, 2015, 32(9):1-4.
|
|
|
[32] |
李辉, 王凯. 未来城市作战装备保障问题研究[J]. 舰船电子工程, 2022, 42(3):162-165.
|
|
|
[33] |
|
[34] |
|
[1] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[2] | LÜ Weimin, SUN Chenfeng, REN Likun, ZHAO Jie, LI Yongqiang. A Gas Path Fault Diagnosis Method for Aero-engine Based on TCN-LGBM Model [J]. Acta Armamentarii, 2024, 45(1): 253-263. |
[3] | PENG Peiran, REN Shubo, LI Jianan, ZHOU Hongwei, XU Tingfa. Illumination-aware Multispectral Fusion Network for Pedestrian Detection [J]. Acta Armamentarii, 2023, 44(9): 2622-2630. |
[4] | QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure [J]. Acta Armamentarii, 2023, 44(9): 2639-2649. |
[5] | LI Zenglin, LI Bo, BAI Shuangxia, MENG Bobo. UAV Autonomous Air Combat Decision-making Based on AM-SAC [J]. Acta Armamentarii, 2023, 44(9): 2849-2858. |
[6] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[7] | LIAN Jing, DING Rongqi, LI Linhui, WANG Xuecheng, ZHOU Yafu. Vehicle Trajectory Prediction Method Based on Graph Models and Attention Mechanism [J]. Acta Armamentarii, 2023, 44(7): 2162-2170. |
[8] | CHEN Zihan. Prognosticating Remaining Useful Life of Electro-Mechanical Actuators Using a Multi-mode Transformer Model [J]. Acta Armamentarii, 2023, 44(10): 2920-2931. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||