Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (1): 144-155.doi: 10.12382/bgxb.2022.0397
Previous Articles Next Articles
KANG Gengxin1, YAN Haichun1,*(), ZHANG Yadong2, LIU Mingjun1, HAO Likai3
Received:
2022-05-18
Online:
2024-01-30
Contact:
YAN Haichun
CLC Number:
KANG Gengxin, YAN Haichun, ZHANG Yadong, LIU Mingjun, HAO Likai. Experimental and Numerical Investigation on the Damage Effects of Concrete Pier under Contact Explosion[J]. Acta Armamentarii, 2024, 45(1): 144-155.
Add to citation manager EndNote|Ris|BibTeX
装药量/ kg | 竖向裂缝/ 条 | 块体数量 | 芯部残高/ cm | 侧面残高/ cm |
---|---|---|---|---|
1.0 | 1~2 | 6 | 65 | 53 |
1.5 | 2 | 8 | 58 | 44 |
2.0 | 2 | 8 | 55 | 40 |
2.5 | 2~3 | 10 | 51 | 38 |
3.0 | 3 | 13 | 46 | 36 |
Table 2 Statistical results of damage in test
装药量/ kg | 竖向裂缝/ 条 | 块体数量 | 芯部残高/ cm | 侧面残高/ cm |
---|---|---|---|---|
1.0 | 1~2 | 6 | 65 | 53 |
1.5 | 2 | 8 | 58 | 44 |
2.0 | 2 | 8 | 55 | 40 |
2.5 | 2~3 | 10 | 51 | 38 |
3.0 | 3 | 13 | 46 | 36 |
T/MPa | R0/(kg·m-3) | PR | A0/MPa | RSIZE | UCF |
---|---|---|---|---|---|
1.45 | 2300 | 0.2 | -16.7 | 39.37 | 1.45×10-4 |
Table 3 Parameters of K & C constitutive model[28]
T/MPa | R0/(kg·m-3) | PR | A0/MPa | RSIZE | UCF |
---|---|---|---|---|---|
1.45 | 2300 | 0.2 | -16.7 | 39.37 | 1.45×10-4 |
A | B | N | plock/GPa | K1/GPa | K2/GPa | K3/GPa |
---|---|---|---|---|---|---|
0.28 | 1.85 | 0.84 | 1.21 | 12 | 135 | 698 |
D1 | D2 | EFMIN | C | |||
0.04 | 1.0 | 0.01 | 0.006 |
Table 4 Parameters of HJC constitutive model[29-30]
A | B | N | plock/GPa | K1/GPa | K2/GPa | K3/GPa |
---|---|---|---|---|---|---|
0.28 | 1.85 | 0.84 | 1.21 | 12 | 135 | 698 |
D1 | D2 | EFMIN | C | |||
0.04 | 1.0 | 0.01 | 0.006 |
SHEAR/MPa | FC/MPa | R0/(kg·m-3) | FT | FS | A | N |
---|---|---|---|---|---|---|
15300 | 16.7 | 2300 | 0.08 | 0 | 1.6 | 0.61 |
Table 5 Parameters of RHT constitutive model[31-32]
SHEAR/MPa | FC/MPa | R0/(kg·m-3) | FT | FS | A | N |
---|---|---|---|---|---|---|
15300 | 16.7 | 2300 | 0.08 | 0 | 1.6 | 0.61 |
Fc/MPa | E/GPa | K/GPa | G/GPa | T/MPa | Omiga | Frac | Fail_ten | Fail_eqs |
---|---|---|---|---|---|---|---|---|
-16.7 | 27.5 | 15.28 | 11.46 | 1.45 | 0.5 | 0.01 | 1 | 0.5 |
Table 6 Parameters of K&C constitutive model[21⇓⇓⇓-25,33]
Fc/MPa | E/GPa | K/GPa | G/GPa | T/MPa | Omiga | Frac | Fail_ten | Fail_eqs |
---|---|---|---|---|---|---|---|---|
-16.7 | 27.5 | 15.28 | 11.46 | 1.45 | 0.5 | 0.01 | 1 | 0.5 |
ρ0/ (kg·m-3) | c0,c1, c2,c3 | c4 | c5 | c6 | e0/ (106J·m-3) |
---|---|---|---|---|---|
1.29 | 0 | 0.4 | 0.4 | 0 | 0.25 |
Table 7 Material parameters of air[34]
ρ0/ (kg·m-3) | c0,c1, c2,c3 | c4 | c5 | c6 | e0/ (106J·m-3) |
---|---|---|---|---|---|
1.29 | 0 | 0.4 | 0.4 | 0 | 0.25 |
ρ/(kg·m-3) | D/(m·s-1) | pC-J/GPa | A/GPa | B/GPa | R1 | R2 | ω | e0/(109J·m-3) |
---|---|---|---|---|---|---|---|---|
1717 | 7980 | 28.6 | 524.2 | 7.768 | 4.2 | 1.1 | 0.34 | 8.5 |
Table 8 Material parameters of explosive[35]
ρ/(kg·m-3) | D/(m·s-1) | pC-J/GPa | A/GPa | B/GPa | R1 | R2 | ω | e0/(109J·m-3) |
---|---|---|---|---|---|---|---|---|
1717 | 7980 | 28.6 | 524.2 | 7.768 | 4.2 | 1.1 | 0.34 | 8.5 |
装药量/ kg | 竖向裂缝/条 | 块体数量 | ||||||
---|---|---|---|---|---|---|---|---|
K&C | HJC | RHT | Kong- Fang | K&C | HJC | RHT | Kong- Fang | |
1.0 | 0 | 0 | 1 | 2 | 1 | 1 | 5 | 9 |
1.5 | 1 | 0 | 1 | 2 | 1 | 1 | 5 | 9 |
2.0 | 1 | 0 | 1 | 4 | 5 | 1 | 5 | 9 |
2.5 | 1 | 0 | 3 | 4 | 5 | 1 | 17 | 13 |
3.0 | 1 | 0 | 3 | 4 | 5 | 1 | 17 | 17 |
装药量/ kg | 芯部残高/cm | 侧面残高/cm | ||||||
K&C | HJC | RHT | Kong- Fang | K&C | HJC | RHT | Kong- Fang | |
1.0 | 68 | 63 | 49 | 67 | 76 | 59 | 61 | 42 |
1.5 | 65 | 63 | 42 | 61 | 57 | 58 | 60 | 38 |
2.0 | 60 | 63 | 46 | 55 | 53 | 58 | 46 | 33 |
2.5 | 58 | 63 | 38 | 50 | 56 | 58 | 45 | 34 |
3.0 | 56 | 63 | 42 | 46 | 53 | 56 | 39 | 32 |
Table 9 Summary of damage results for different models
装药量/ kg | 竖向裂缝/条 | 块体数量 | ||||||
---|---|---|---|---|---|---|---|---|
K&C | HJC | RHT | Kong- Fang | K&C | HJC | RHT | Kong- Fang | |
1.0 | 0 | 0 | 1 | 2 | 1 | 1 | 5 | 9 |
1.5 | 1 | 0 | 1 | 2 | 1 | 1 | 5 | 9 |
2.0 | 1 | 0 | 1 | 4 | 5 | 1 | 5 | 9 |
2.5 | 1 | 0 | 3 | 4 | 5 | 1 | 17 | 13 |
3.0 | 1 | 0 | 3 | 4 | 5 | 1 | 17 | 17 |
装药量/ kg | 芯部残高/cm | 侧面残高/cm | ||||||
K&C | HJC | RHT | Kong- Fang | K&C | HJC | RHT | Kong- Fang | |
1.0 | 68 | 63 | 49 | 67 | 76 | 59 | 61 | 42 |
1.5 | 65 | 63 | 42 | 61 | 57 | 58 | 60 | 38 |
2.0 | 60 | 63 | 46 | 55 | 53 | 58 | 46 | 33 |
2.5 | 58 | 63 | 38 | 50 | 56 | 58 | 45 | 34 |
3.0 | 56 | 63 | 42 | 46 | 53 | 56 | 39 | 32 |
[1] |
顾文彬, 叶序双, 王自力. 水中爆炸冲击波作用下混凝土墩动态响应初步分析[J]. 爆炸与冲击, 1999, 26(1): 73-78.
|
|
|
[2] |
顾文彬, 郑向平, 刘建青, 等. 浅层水中爆炸冲击波对混凝土墩斜碰撞作用试验研究[J]. 爆炸与冲击, 2006, 26(4): 361-366.
|
|
|
[3] |
李裕春, 程克明, 沈蔚, 等. 水中冲击波对混凝土结构破坏的实验研究[J]. 材料工程, 2008, 36(12): 19-23.
|
|
|
[4] |
李裕春, 刘强, 毛益明, 等. 浅层水中冲击波作用下混凝土墩的动态响应分析[C]// 第七届全国工程结构安全防护学术会议论文集. 宁波: 中国力学学会爆炸力学专业委员会和中国土木工程学会防护工程分会, 2009: 89-94.
|
|
|
[5] |
郝礼楷, 顾文彬, 邹绍昕, 等. 空气中集团装药对混凝土墩接触爆炸毁伤研究[J/OL]. 兵器装备工程学报:1-6[2022-04-27].
|
|
|
[6] |
doi: 10.1016/S0734-743X(97)00023-7 URL |
[7] |
|
[8] |
|
[9] |
doi: 10.1016/j.ijimpeng.2008.01.004 URL |
[10] |
doi: 10.1260/2041-4196.1.3.299 URL |
[11] |
|
[12] |
|
[13] |
汪剑辉, 吕林梅, 尚伟, 等. 接触爆炸载荷下钢筋混凝土梁的毁伤特性研究[J]. 防护工程, 2020, 42(2): 22-27.
|
|
|
[14] |
|
[15] |
徐世烺, 吴平, 周飞, 等. 活性粉末混凝土抗多次侵彻实验研究及数值预测[J] 爆炸与冲击, 2021, 41(6): 68-83.
|
|
|
[16] |
王政, 倪玉山, 曹菊珍, 等. 冲击载荷下混凝土本构模型构建研究[J]. 高压物理学报, 2006, 20(4): 337-344.
|
|
|
[17] |
doi: 10.1016/j.ijimpeng.2008.03.006 URL |
[18] |
|
[19] |
|
[20] |
doi: 10.1016/j.ijimpeng.2010.10.003 URL |
[21] |
doi: 10.1016/j.ijimpeng.2018.05.006 URL |
[22] |
|
[23] |
|
[24] |
高矗, 孔祥振, 方秦, 等. 混凝土中爆炸应力波衰减规律的数值模拟研究[J/OL]. 爆炸与冲击:1-14[2022-04-20]. http://kns.cnki.net/kcms/detail/51.1148.O3.20220411.1502.012.html.
|
|
|
[25] |
王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究[J/OL]. 爆炸与冲击:1-13[2021-12-28]. http://kns.cnki.net/kcms/detail/51.1148.O3.20210902.1102.004.html.
|
|
|
[26] |
LS-DYNA. Keyword user’s manual[R]. Livermore, CA, US: Livermore Software Technology Corporation, 2020.
|
[27] |
|
[28] |
|
[29] |
任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击, 2016, 35(18): 9-16.
|
|
|
[30] |
张社荣, 宋冉, 王超, 等. 碾压混凝土HJC动态本构模型修正及数值验证[J]. 振动与冲击, 2019, 38(12): 25-31.
|
|
|
[31] |
|
[32] |
|
[33] |
|
[34] |
吴赛, 赵均海, 张冬芳, 等. 自由空气中爆炸冲击波的数值分析[J]. 工程爆破, 2019, 25(3):1-6,31.
|
|
|
[35] |
王新颖, 王树山, 王绍慧, 等. 典型水中战斗部炸药装药跌落撞击响应特性[J]. 兵工学报, 2021, 42(增刊1):33-39.
|
|
[1] | ZHANG He, HUANG Yi, LIU Keyan, LI Pengchao, GU Tongguang, WANG Yongjuan, XU Cheng. Research on the Influence of Salt Spray Environment on the Movement of Typical Rifle Automaton [J]. Acta Armamentarii, 2024, 45(4): 1082-1093. |
[2] | XU Wenxu, LI Zhao, LU Fandong. Accurate Evaluation Method for Damage Effectiveness of Anti-tank Missile Based on State Space [J]. Acta Armamentarii, 2024, 45(3): 810-817. |
[3] | LOU Wenzhong, HE Bo, FENG Hengzhen, LI Xinzhe, YANG Tingqi, SU Wenting, LÜ Sining, ZHANG Mingrong, YU Xuerui. Real-time Simulation of Terminal Air Defense Interception of Small Caliber Fixed Distance Air-burst Ammunition and Research on the Opening Distance [J]. Acta Armamentarii, 2024, 45(2): 584-593. |
[4] | XIAO Wangang, ZHOU Yunbo, FU Yaoyu, ZHANG Ming, ZHOU Jun, GE Jitao. Analysis of the Influence of Soil on the Maneuverability of Military Off-road Vehicles [J]. Acta Armamentarii, 2024, 45(1): 288-298. |
[5] | ZHOU Guangpan, WANG Rong, WANG Mingyang, DING Jianguo, ZHANG Guokai. Experiment and Numerical Simulation of Explosion Resistance Performance of Main Girder of Self-anchored Suspension Bridge Coated with Polyurea [J]. Acta Armamentarii, 2023, 44(S1): 9-25. |
[6] | LI Siqi, GONG Peng, SHAN Dan, LI Jianfeng, LIU Yu, GAO Xiang. Design and Implementation of Hardware-in-the-loop Test Architecture for UAV Information Attack Based on QualNet [J]. Acta Armamentarii, 2023, 44(9): 2709-2721. |
[7] | ZHANG Rongfan, NI Peijun, GUO Zhimin, YANG Zhuolin, FU Kang. Correction Method of Mechanical Backlash Error in Ultrasonic Testing of Curved Components [J]. Acta Armamentarii, 2023, 44(8): 2432-2440. |
[8] | LI Dingyuan, FANG Bin, LI Yiming, LIU Wenxi. Control Mechanism of Vortex Generator to the Flow Noise of Wing-plate Junction [J]. Acta Armamentarii, 2023, 44(8): 2404-2413. |
[9] | LIU Tao, ZHANG Hongwei, SUN Xiaowang, WANG Xianhui, ZHANG Jincheng, HU Yang. Experimental and Simulation Study on Vehicle Manned Airdrop [J]. Acta Armamentarii, 2023, 44(8): 2283-2298. |
[10] | ZHANG Jian, SHEN Lin. Simulation Analysis and Experimental Verification of the Electrical Energy Power System for Underwater Vehicles [J]. Acta Armamentarii, 2023, 44(7): 2101-2113. |
[11] | ZHOU Lin, NI Lei, LI Dongwei, ZHANG Xiangrong, LIU Haiqing, JIANG Tao, ZHU Yingzhong. Test Method for Anti-overload Performance of Explosives [J]. Acta Armamentarii, 2023, 44(6): 1722-1732. |
[12] | JI Qizheng, LIU Shanghe, WANG Zhihao, YANG Ming, DING Yigang, WANGSizhan, SHEN Zicai, LIU Yuming. Comprehensive Proton Irradiation and Electric Field Testing System and Method for GaN Devices [J]. Acta Armamentarii, 2023, 44(6): 1704-1712. |
[13] | DU Yutian, XU Zejian, HU Hongzhi, HUANG Fenglei. Dynamic Shear Test Method of Metallic Materials [J]. Acta Armamentarii, 2023, 44(5): 1502-1512. |
[14] | HU Rong, JIANG Chunlan, LU Guangzhao, WANG Zaicheng, MAO Liang. Damage Effects and Engineering Computational Model of Internal Explosion of Airfield Runway [J]. Acta Armamentarii, 2023, 44(4): 929-939. |
[15] | ZENG Zihao, ZHANG Jingdong, GONG Xuelian, LIU Kunming, GUI Xuewen, LIAO Ridong. Strength Calculation Method of Double-Pin Track Shoes Under Tensile Load [J]. Acta Armamentarii, 2023, 44(3): 831-840. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||