Welcome to Acta Armamentarii ! Today is Share:

Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (4): 929-939.doi: 10.12382/bgxb.2022.1220

Previous Articles     Next Articles

Damage Effects and Engineering Computational Model of Internal Explosion of Airfield Runway

HU Rong1(), JIANG Chunlan1,*(), LU Guangzhao2, WANG Zaicheng1, MAO Liang1   

  1. 1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    2. China Research and Development Academy of Machinery Equipment, Beijing 100089, China
  • Received:2022-12-05 Online:2023-04-28
  • Contact: JIANG Chunlan

Abstract:

To systematically investigate the damage effects of airfield runways subjected to charge implosion and construct an engineering function model, experiments and numerical simulations are conducted using dimension analytics to study the influence of charge quality and buried depth levels on damage modes and damage parameters of airfield runways. Results indicate that the effective damage radius (Red) initially increases and then decreases with an increase in buried depth of charge at a constant charge quantity. Conversely, damage parameters increase with an increasing charge quantity when the buried depth is constant, and an optimal matching of explosion energy and buried depth can achieve the ideal damage. Additionally, based on the analysis of the mechanism of implosion in the runways, an evaluation method which combines damage mode and damage parameters to effectively characterize the damage of implosion in airfield runways is proposed. Based on the crater pattern and cracks obtained from experiments and numerical simulations, there are three damage modes of the runways: open crater, heave crater, and camouflet. The crater radius Rc, effective damage radius Red, maximum internal cavity radius Ric, and actual crater depth H are used as characteristic parameters to quantitatively describe the damage within the runways. An engineering model to predict the damage mode and damage parameters of implosion on airfield runways is also constructed based on a large number of simulations and experimental data, achieving rapid prediction of airfield runway implosion damage effects.

Key words: internal explosion of airfield runway, damage effect, damage mode