Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (2): 240170-.doi: 10.12382/bgxb.2024.0170
Previous Articles Next Articles
XU Tunan1, GAO Ang1,*(), CHEN Yucheng2, YAN Shoucheng3, DENG Bin3
Received:
2024-03-11
Online:
2025-02-28
Contact:
GAO Ang
CLC Number:
XU Tunan, GAO Ang, CHEN Yucheng, YAN Shoucheng, DENG Bin. A Lightweight Recognition Method for Low Altitude Targets in the Battlefield[J]. Acta Armamentarii, 2025, 46(2): 240170-.
Add to citation manager EndNote|Ris|BibTeX
真实情况 | 预测情况 | |
---|---|---|
正例 | 反例 | |
正例 | TP(真正例) | FN(假反例) |
反例 | FP(假正例) | TN(真反例) |
Table 1 Predicted results of binary classification samples
真实情况 | 预测情况 | |
---|---|---|
正例 | 反例 | |
正例 | TP(真正例) | FN(假反例) |
反例 | FP(假正例) | TN(真反例) |
参数 | 数值 |
---|---|
训练周期 | 100 |
批次训练样本数量 | 16 |
图片输入大小 | 640×640 |
是否断点续训 | 无 |
训练冻结层数 | 0 |
学习率调整算法 | 余弦学习率 |
初始学习率 | 0.01 |
Table 2 Initial parameter setting
参数 | 数值 |
---|---|
训练周期 | 100 |
批次训练样本数量 | 16 |
图片输入大小 | 640×640 |
是否断点续训 | 无 |
训练冻结层数 | 0 |
学习率调整算法 | 余弦学习率 |
初始学习率 | 0.01 |
算法 | mAP@0.5 | F1 | 参数量/ 106 | 模型大小/ MB | 浮点运算/ GFLOPs |
---|---|---|---|---|---|
YOLOv5s | 0.865 | 0.858 | 7.0 | 13.7 | 15.8 |
YOLOv5x | 0.883 | 0.860 | 86 | 165.1 | 203.8 |
YOLOv7 | 0.886 | 0.860 | 37.2 | 71.4 | 51.2 |
YOLOv7x | 0.887 | 0.862 | 70.1 | 135.2 | 102.3 |
YOLOF | 0.863 | 0.861 | 3.6 | 7.0 | 7.1 |
Table 3 Experimental results of different target detection algorithms
算法 | mAP@0.5 | F1 | 参数量/ 106 | 模型大小/ MB | 浮点运算/ GFLOPs |
---|---|---|---|---|---|
YOLOv5s | 0.865 | 0.858 | 7.0 | 13.7 | 15.8 |
YOLOv5x | 0.883 | 0.860 | 86 | 165.1 | 203.8 |
YOLOv7 | 0.886 | 0.860 | 37.2 | 71.4 | 51.2 |
YOLOv7x | 0.887 | 0.862 | 70.1 | 135.2 | 102.3 |
YOLOF | 0.863 | 0.861 | 3.6 | 7.0 | 7.1 |
算法 | 海边 | 沙地 | 森林 | 平原 |
---|---|---|---|---|
YOLOv7 | | | | |
YOLOv5s | | | | |
YOLOv5x | | | | |
YOLO-F (蒸馏后未剪枝) | | | | |
YOLO-F | | | | |
Table 4 Experimental effect diagrams of mainstream algorithms
算法 | 海边 | 沙地 | 森林 | 平原 |
---|---|---|---|---|
YOLOv7 | | | | |
YOLOv5s | | | | |
YOLOv5x | | | | |
YOLO-F (蒸馏后未剪枝) | | | | |
YOLO-F | | | | |
模型 | 改进策略 | mAP | 参数量/106 | 模型大小/MB |
---|---|---|---|---|
A | Yolov5s(初始模型) | 0.865 | 7.2 | 13.7 |
B | A+RepVGG | 0.860 | 6.2 | 12.6 |
C | B+剪枝 | 0.827 | 3.6 | 7.0 |
D | C+知识蒸馏 | 0.863 | 3.6 | 7.0 |
Table 5 Chart of ablation experimental results
模型 | 改进策略 | mAP | 参数量/106 | 模型大小/MB |
---|---|---|---|---|
A | Yolov5s(初始模型) | 0.865 | 7.2 | 13.7 |
B | A+RepVGG | 0.860 | 6.2 | 12.6 |
C | B+剪枝 | 0.827 | 3.6 | 7.0 |
D | C+知识蒸馏 | 0.863 | 3.6 | 7.0 |
[1] |
张凯歌, 卢志刚, 聂天常, 等. 面向无人装备的智能边缘计算软技术分析[J]. 兵工学报, 2023, 44(9):2611-2621.
doi: 10.12382/bgxb.2022.1166 |
doi: 10.12382/bgxb.2022.1166 |
|
[2] |
陈龙, 张建林, 彭昊, 等. 多尺度注意力与领域自适应的小样本图像识别[J]. 光电工程, 2023, 50(4):60-73.
|
|
|
[3] |
程旭, 宋晨, 史金钢, 等. 基于深度学习的通用目标检测研究综述[J]. 电子学报, 2021, 49(7):1428-1438.
doi: 10.12263/DZXB.20200570 |
|
|
[4] |
|
[5] |
|
[6] |
|
[7] |
于博文, 吕明. 改进的YOLOv3算法及其在军事目标检测中的应用[J]. 兵工学报, 2022, 43(2):345-354.
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
doi: 10.3969/j.issn.1000-1093.2022.02.012 |
|
[8] |
熊光明, 罗震, 孙冬, 等. 基于红外相机和毫米波雷达融合的烟雾遮挡无人驾驶车辆目标检测与跟踪[J]. 兵工学报, 2024, 45(3):893-906.
doi: 10.12382/bgxb.2022.0602 |
doi: 10.12382/bgxb.2022.0602 |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
刘飞, 高红艳, 卫泽刚, 等. 基于Res-Net深度特征的SAR图像目标识别方法[J]. 液晶与显示. 2021, 36(4):624-631.
|
|
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[1] | CHEN Shichao, WEI Jingbiao, FAN Jun, WEI Xizhang, WANG Zechao, SUN Qian, LIU Ming. Research on HRRP Sequences Recognition Based on Discriminative Infinite Fuzzy Restricted Boltzmann Machine Model [J]. Acta Armamentarii, 2024, 45(S1): 43-50. |
[2] | XIAO Feng, LU Hao, ZHANG Wenjuan, HUANG Shujuan, JIAO Yulin, LU Zhaoting, LI Zhaoshan. Aerial Infrared Image Target Recognition Algorithm Based on Rotation Equivariant Convolution [J]. Acta Armamentarii, 2024, 45(8): 2817-2827. |
[3] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[4] | ZHANG Kaige, LU Zhigang, NIE Tianchang, LI Zhiwei, GUO Yuqiang. Analysis of Soft Intelligent Edge Computing Technologies for Unmanned Systems [J]. Acta Armamentarii, 2023, 44(9): 2611-2621. |
[5] | ZHAO Xiaodong, ZHANG Xunying. Optimization Algorithm of Autonomous Target Recognition for Unmanned Vehicles Based on YOLOv5 [J]. Acta Armamentarii, 2023, 44(9): 2732-2744. |
[6] | LIU Bing, HAO Xinhong, ZHOU Wen, YANG Jin. Recognition Method of Target and Sweep Jamming Signal for FM Radio Fuze Based on BAS-BPNN [J]. Acta Armamentarii, 2023, 44(8): 2391-2403. |
[7] | HUO Jian, CHEN Huimin, MA Yunfei, GUO Pengyu, YANG Xu, MENG Xiangsheng. Vehicle Target Recognition Algorithm Based on MEMS LiDAR [J]. Acta Armamentarii, 2023, 44(4): 940-948. |
[8] | DING Bosheng, ZHANG Ruiheng, XU Lixin, CHEN Huiming. Sand-dust Image Restoration Using Gray Compensation and Feature Fusion [J]. Acta Armamentarii, 2023, 44(10): 3115-3126. |
[9] | WANG Shu-guang, ZENG Xiang-yang, WANG Zheng, WANG Qiang. Gammatone Subband Denoising and HHT-based Feature Extraction for Underwater Targets [J]. Acta Armamentarii, 2015, 36(9): 1704-1709. |
[10] | LI Cheng, LI Jian-xun, TONG Zhong-xiang, JIA Lin-tong, ZHANG Zhi-bo. Research on Partial Image Recognition and Tracking in Infrared Imaging Terminal Guidance [J]. Acta Armamentarii, 2015, 36(7): 1213-1221. |
[11] | SU Juan, YANG Luo, ZHANG Yang-yang. Infrared Target Recognition Algorithm Based on Contour Fragment Matching and Graph Searching [J]. Acta Armamentarii, 2015, 36(5): 854-860. |
[12] | ZHANG Peng-fei, LIU Wei, JIANG Ze-lin, LIU Ji-yuan, ZHANG Chun-hua. Research on Shadow Enhancement for Synthetic Aperture Sonar Images [J]. Acta Armamentarii, 2015, 36(2): 305-312. |
[13] | LIU Hui, YANG Jun-an, WANG Yi, CAI Xue-liang. An Improved Isometric Mapping Algorithm Based on New Geodesic Distance and Its Application in theFeature Extraction of Acoustic Targets [J]. Acta Armamentarii, 2012, 33(10): 1178-1184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||