| 
 [1]  王志, 陈平, 潘晋孝. 基于深度学习的复杂背景下目标检测[J]. 重庆理工大学学报(自然科学版), 2018,32(4): 171-176.
 WANG Z, CHEN P, PAN J X. Target detection in complex background based on deep learning[J]. Journal of Chongqing University of Technology (Natural Science), 2018, 32(4):171-176. (in Chinese)
 [2]  康一飞. 光学遥感卫星影像云检测方法及应用[D]. 武汉:武汉大学, 2018.
 KANG Y F. Optical remote sensing satellite image cloud detection method and its application[D]. Wuhan: Wuhan University, 2018. (in Chinese)
 [3]  李志军, 王卫华, 牛照东, 等. 城区红外遥感云层检测技术[J].中国激光,2012,39(11):  121-126.
 LI Z J, WANG W H, NIU Z D, et al. Urban infrared remote sensing cloud detection technology[J]. China Laser, 2012, 39(11):  121-126. (in Chinese)
 [4]  SAUNDERS  R W, KRIEBEL K T. An improved method for detecting clear sky and cloudy radiances from AVHRR data[J]. International Journal of Remote Sensing, 1987, 9(1):123-150.
 [5]  ROSSOW W B. International satellite cloud climatology project[J]. Bulletin of the American Meteorological Society, 2004, 85(2): 173-191.
 [6]  陈亮, 王志茹, 韩仲, 等. 基于可见光遥感图像的船只目标检测识别方法[J]. 科技导报, 2017,35(20):79-85.
 CHEN L, WANG Z R, HAN Z, et al. Ship target detection and recognition method based on visible light remote sensing image[J]. Science & Technology Review, 2017, 35(20): 77-85. (in Chinese)
 [7]  王睿. 光学遥感图像厚云检测与去除方法研究[D]. 桂林: 桂林理工大学, 2015.
 WANG R. Research on detection and removal of thick cloud in optical remote sensing image [D]. Guilin: Guilin University of Technology, 2015. (in Chinese)
 [8]  HU X Y, WANG Y, SHAN J. Automatic recognition of cloud images  by using visual saliency features[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8):1760-1 764.
 [9]  MA C, CHEN F, LIU J, et al. A new method of cloud detection based on cascaded AdaBoost[J]. IOP Conference Series: Earth and Environmental Science, 2014, 18(1): 12-26.
 
 [10]  闵召阳, 赵文杰. 基于深度学习的目标抗干扰跟踪算法[J]. 红外技术, 2018,40(2):176-182.
 MIN Z Y, ZHAO W J. Target anti-interference tracking algorithm based on deep learning[J]. Infrared Technology, 2018, 40(2): 176-182. (in Chinese)
 [11]  REN  S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
 [12]  REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, US: IEEE Computer Society, 2015: 779-788.
 [13]  LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]∥Proceedings of European Conference on Computer Vision. Amsterdam, Holland:University of Amsterdam, 2016: 21-37.
 [14]  REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. HI, US: IEEE Computer Society, 2017: 6517-6525.
 [15]  袁公萍, 汤一平, 韩旺明, 等. 基于深度卷积神经网络的车型识别方法[J]. 浙江大学学报(工学版), 2018, 52(4): 213-220.
 YUAN G P, TANG Y P, HAN W M, et al. Vehicle identification method based on deep convolutional neural network[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(4):  213-220. (in Chinese)
 [16]  LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. HI, US: IEEE Computer Society, 2017:936-944.
 [17]  LIU Y J, CHANG J Y, CHEN C K, et al. Face recognition with single training sample per person based on bit-planes image and 2DMSLDA[J]. Computer Engineer and Applications, 2010, 46(15):  172-175.
 [18]  赵雅英, 谭延琪, 马小虎. 基于样本扩充和改进2DPCA的单样本人脸识别[J]. 计算机应用, 2011, 31(10):2728-2730.
 ZHAO Y Y, TAN Y Q, MA X H. Single-sample face recognition based on sample expansion and improved 2DPCA[J]. Journal of Computer Applications, 2011, 31(10): 2728-2730. (in Chinese)
 
 
 
 
 第40卷
 第7期2019  年7月兵工学报ACTA
 ARMAMENTARIIVol.40No.7Jul.2019
 
 
 |