| 
 [1]  STEWART  J B. A pressure-dependent damage model for energetic materials: ARL-RP-436 [R]. Aberdeen Proving Ground, MD, US: Army Research Laboratory,2013.
 [2]  XIAO Y C, SUN Y, ZHEN Y B, et al. Characterization, modeling and simulation of the impact damage for polymer bonded explosives[J]. International Journal of Impact Engineering, 2017,103:149-158.
 [3]  WANG X J, WU Y Q, HUANG F L, et al. Mesoscale thermal-mechanical analysis of impacted granular and polymer-bonded explosives[J]. Mechanics of Materials, 2016,99:68-78.
 [4]  BARUA A, ZHOU M. A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives[J]. Modelling and Simulation in Materials Science and Engineering, 2011, 19(5): 055001.
 [5]  LIU Z W, XIE H M, LI K X, et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J]. Polymer Testing, 2009, 28(6):627-635.
 [6]  ELLIS K, LEPPARD C, RADESK H. Mechanical properties and damage evaluation of a UK PBX[J]. Journal of Materials Science, 2005, 40(23):6241-6248.
 [7]  ZHOU Z, CHEN P, DUAN Z, et al. Study on fracture behaviour of a polymer-bonded explosive simulant subjected to uniaxial compression using digital image correlation method[J]. Strain, 2012, 48(4):326-332.
 [8]  PARTHA R, DARLA G T, LIU C,et al. Modeling the mechanical response of PBX 9501[C]∥Proceedings of the 14th International Detonation  Symposium. Coeur d'Alene, ID, US: University of Maryland, 2010:174-183.
 [9]  HERVE T, PHILIPPE L, GUILLAUME V, et al. Toward physically-based explosive modeling: meso-scale investigations[M]∥BUZAUD E, IONESCU I R, VOYIADJIS G Z. Materials under Extreme Loadings. London, UK: ISTE Ltd., 2013:179-207.
 
 [10]  REAUGH  J E. HERMES: A model to describe deformation, burning, explosion, and detonation: LLNL-TR-516119[R]. Livermore, CA, US: Lawrence Livermore National Laboratory, 2011.
 [11]  GRUAU C, PICART D, BELMAS R, et al. Ignition of a confined high explosive under low velocity impact[J]. International Journal of Impact Engineering, 2009, 36(4):537-550.
 [12]  GRATTON M, GONTIER C, RJA FI ALLAH S, et al. Mechanical characterization of a viscoplastic material sensitive to hydrostatic pressure [J]. European Journal of Mechanics A/Solids, 2009, 28(5):935-947.
 [13]  MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10):847-873.
 [14]  BAILLY P, DELVARE F, VIAL J, et al. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[J]. International Journal of Impact Engineering, 2011, 38(2/3):73-84.
 [15]  WIEGAND D A, REDINGIUS B, ELLIS K, et al. Pressure and friction dependent mechanical strength-cracks and plastic flow[J]. International Journal of Solids and Structures, 2011, 48(11/12): 1617-1629.
 [16]  崔云霄, 陈鹏万, 刘龑龙, 等. PBX 9501炸药动态增强因子的预测公式[J]. 火炸药学报, 2015, 38(3):54-58.
 CUI Y X, CHEN P W, LIU Y L, et al. Predicted formula of the dynamic increase factor of PBX9501[J]. Chinese Journal of Explosives & Propellants, 2015, 38(3):54-58.(in Chinese)
 [17]  WIEGAND D A. Constant strain criteria for mechanical failure of energetic materials[J]. Journal of Energetic Materials, 2003, 21(2): 109-124.
 [18]  唐维. PBX炸药的准静态本构模型与强度准则[D]. 南京:南京理工大学, 2016.
 TANG W. Quasi-static constitutive model and strength criterion for PBX explosives[D]. Nanjing:Nanjing University of Science and Technology, 2016. (in Chinese)
 [19]  黄西成, 李尚昆, 魏强, 等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017, 25(8):694-700.
 HUANG X C, LI S K, WEI Q, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM-based cohesive method[J]. Chinese Journal of Energetic Materials, 2017, 25(8): 694-700. (in Chinese)
 [20]  GORDON R J, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures[J]. Journal of Applied Physics, 1999, 85(12):8060-8073.
 [21]  RALPH M, THOMAS D S. Constituent properties of HMX needed  for mesoscale simulations[J]. Combustion Theory and Modelling,  2002, 6(1):103-125.
 [22]  吕玺琳. 岩土材料应变局部化理论预测及数值模拟[D]. 上海:同济大学, 2008.
 L X L. Theoretical prediction and numerical simulation of strain localization for geomaterials[D]. Shanghai:Tongji University, 2008.(in Chinese)
 [23]  WANG X, MA S P, ZHAO Y T, et al. Observation of damage evolution in polymer bonded explosives using acoustic emission and digital image correlation[J]. Polymer Testing, 2011, 30(8):861-866.
 [24]  王小平, 孟国涛. 非局部化弹塑性理论及其应用[J].岩土力学与工程学报, 2007, 26(增刊1):2964-2967.
 WANG X P, MENG G T. Nonlocal elastoplastic theory and its application[J]. Chinese Journal of Rock Mechanics and Engineering. 2007, 26(S1): 2964-2967.(in Chinese)
 [25]  VIAL J, PICART D, BAILLY P, et al. Numerical and experimental study of the plasticity of HMX during a reverse edge-on impact test[J].Modelling and Simulation in Materials Science and Engineering, 2013, 21(4): 045006.
 [26]  GRUAU C, PICART D. Numerical prediction of high explosive ignition under low velocity impact[J]. Foundations of Civil and Environmental Engineering, 2008, 1:33-48.
 
 
 
 
 
 
 第40卷
 第7期2019  年7月兵工学报ACTA
 ARMAMENTARIIVol.40No.7Jul.2019
 
 
 |