欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240549-.doi: 10.12382/bgxb.2024.0549

• • 上一篇    

基于改进变异萤火虫优化粒子滤波的无人机目标定位

闫啸家1, 朱惠民1, 孙世岩1,*(), 石章松1, 姜尚2   

  1. 1 海军工程大学, 湖北 武汉 430033
    2 大连舰艇学院 导弹与舰炮系, 辽宁 大连 116018
  • 收稿日期:2024-07-04 上线日期:2025-05-07
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(61640308); 湖北省自然科学基金项目(2023AFB900)

An Improved Mutant Firefly Algorithm Optimized Particle Filter Algorithm for UAV Target Positioning

YAN Xiaojia1, ZHU Huimin1, SUN Shiyan1,*(), SHI Zhangsong1, JIANG Shang2   

  1. 1 Naval University of Engineering, Wuhan 430033, Hubei, China
    2 Department of Missiles and Artillery, Dalian Naval Academy, Dalian 116018, Liaoning, China
  • Received:2024-07-04 Online:2025-05-07

摘要:

针对无人机光电平台受到严重非线性因素影响,从而导致目标定位精度显著降低的问题,提出一种基于改进变异萤火虫优化粒子滤波(Improved Mutant Firefly Algorithm-Particle Filter,IMFA-PF)算法,用于无人机对地面目标精确定位。首先,建立无人机光电平台目标观测的状态方程和测量方程;利用IMFA-PF算法对目标地理位置进行估计,通过引入多重变异策略和弹力机制来改变粒子之间的相互作用模式,解决由严重非线性因素以及过度优化导致的粒子退化问题;通过一维非线性不稳定仿真系统和实测飞行实验验证了该算法的有效性。实验结果表明,所提算法能够改善粒子分布受观测非线性的影响,有效解决粒子退化的问题,与已有算法相比具有更好的鲁棒性和定位精度。

关键词: 无人机, 目标定位, 粒子滤波, 群智能优化, 非线性因素

Abstract:

In response to the significant reduction in target positioning accuracy caused by severe nonlinear factors affecting UAV electro-optical platforms, an algorithm based on improved mutant firefly algorithm-particle filter (IMFA-PF) is proposed for UAVs to accurately locate ground targets. Firstly, the state equations and measurement equations for target observation from UAV electro-optical platform are established. And then the IMFA-PF algorithm is utilized to estimate the geographic locatio of a target, and the interaction patterns among particles are altered by introducing multiple mutation strategies and an elasticity mechanism, thereby addressing the particle degradation issues caused by severe nonlinear factors and excessive optimization. Finally, the effectiveness of the algorithm is verified through a one-dimensional nonlinear unstable simulation system and actual flight experiments. Experimental results indicate that the proposed algorithm can improve the particle distribution’s resilience to observational nonlinearity and effectively tackle particle degradation issues, showing better robustness and positioning accuracy compared to the existing positioning methods.

Key words: unmanned aerial vehicle, target positioning, particle filter, swarm intelligence optimization, nonlinear factor

中图分类号: