欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (9): 240818-.doi: 10.12382/bgxb.2024.0818

• • 上一篇    下一篇

基于改进CNN-LSTM的开关闩故障诊断方法

高振华1, 秦奋起2, 王琳琳2, 于存贵*()   

  1. 1 南京理工大学 机械工程学院, 江苏 南京 210094
    2 中国船舶重工集团公司第七一三研究所, 河南 郑州 450015

An Improved CNN-LSTM-based Fault Diagnosis Method for Breechblock Opening-closing Mechanism

GAO Zhenhua1, QIN Fenqi2, WANG Linlin2, YU Cungui*()   

  1. 1 School of Mechanical Engineering, Nanjing University o Science and Technology, Nanjing 210094, Jiangsu, China
    2 The 713th Research Institute of China Shipbuilding Industry Corporation, Zhengzhou 450015, Henan, China
  • Received:2024-09-09 Online:2025-09-24

摘要:

针对某舰炮开关闩机构关重件磨损和弹簧弹性减弱两类典型故障模式,传统故障诊断方法主要依赖于人工检查、专家经验推理和理论仿真等方法,不仅时间周期较长,而且诊断精度难以保证。针对此问题,采用深度学习的方法,提出一种基于麻雀搜索算法(Sparrow Search Algorithm,SSA)的格拉姆角场结合卷积神经网络和长短期记忆神经网络(Graham Angle Field-Convolutional Neural Network-Long Short-Term Memory,GAF-CNN-LSTM)的开关闩故障诊断方法。通过试验台架采集开关闩机构故障原始信号并进行预处理,通过时频分析法和格拉姆角场法建立一维时序数据和二维图像故障数据集;将故障数据集分别输入到使用卷积神经网络(Convolutional Neural Network,CNN)和长短期记忆神经网络(Long Short-Term Memory,LSTM)通道中,利用CNN强大的空间特征提取能力和LSTM挖掘数据时序特征能力进行特征提取,并将二者得到的特征信息进行融合,在全连接层和激活函数的作用下输出诊断结果;通过SSA对GAF-CNN-LSTM网络结构中的超参数进行优化,提高模型的诊断精度和适用性。经测试数据验证:提出的SSA-GAF-CNN-LSTM故障诊断模型不仅可以更精准地诊断开关闩机构故障类型,而且具有更强的泛化能力及抗干扰能力,有效地提高了开关闩机构故障诊断的性能。

关键词: 故障诊断, 开关闩机构, 深度学习算法, 群体智能优化算法, 格拉姆角场

Abstract:

In view of the two typical failure modes of breechblock opening-closing mechanism for a naval gun,namely the wear of the key parts and the weakening of spring elasticity,the traditional fault diagnosis methods mainly rely on manual inspection,expert empirical reasoning and theoretical simulation.However,these methods not only take a long time for diagnosis,but also the diagnostic accuracy cannot be guarantee.In order to solve this problem,a fault diagnosis method of Gram angle field combined with convolutional neural network and long short-term memory neural network (GAF-CNN-LSTM) based on sparrow search algorithm (SSA) is proposed by using the deep learning algorithms.Firstly,the original fault signal of the breechblock opening-closing mechanism is collected and preprocessed by the test bench,and the one-dimensional time-series data and two-dimensional image fault dataset are established by the time-frequency analysis method and the Gramian angular field method.Then the fault dataset is input into the LSTM and CNN channels,respectively,and the powerful spatial feature extraction ability of CNN and the time-series feature ability of LSTM mining data are used to extract the features,and the feature informations obtained by the two abilities are fused to output the diagnostic results under the action of the fully connected layer and activation function.Finally,the SSA optimization algorithm is used to optimize the hyperparameters in the GAF-CNN-LSTM network structure to improve the diagnostic accuracy and applicability of the model.The proposed SSA-GAF-CNN-LSTM fault diagnosis model is verified by the test data.The result shows that the proposed fault diagnosis model can not only diagnose the fault type of the breechblock opening-closing mechanism for naval gun more accurately,but also has stronger generalization ability and anti-interference ability,which effectively improves the fault diagnosis performance of the breechblock opening-closing mechanism.

Key words: fault diagnosis, breechblock opening-closing mechanism, deep learning algorithm, swarm intelligence optimization algorithm, Gramian angular field