欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (8): 240954-.doi: 10.12382/bgxb.2024.0954

• • 上一篇    下一篇

多轴轮式铰接特种车辆双策略轨迹跟踪控制

张发旺1, 陈良发2, 段京良2, 刘辉1, 聂士达1,*(), 张晨1   

  1. 1.北京理工大学 机械与车辆学院, 北京 100081
    2.北京科技大学 机械工程学院, 北京 100083
  • 收稿日期:2024-10-15 上线日期:2025-08-28
  • 通讯作者:
  • 基金资助:
    国家自然科学基金重大项目(52394262); 国家自然科学基金重点项目(52130512)

Bi-level Strategy Trajectory Tracking Control of Multi-axle Articulated Wheeled Vehicle

ZHANG Fawang1, CHEN Liangfa2, DUAN Jingliang2, LIU Hui1, NIE Shida1,*(), ZHANG Chen1   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    2. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2024-10-15 Online:2025-08-28

摘要:

多轴轮式铰接特种车辆在轨迹跟踪时易产生尾部放大效应和侧倾等不稳定性问题,研究多轴轮式铰接车辆的稳定性轨迹跟踪具有重要意义。以只有拖车具备转向能力的多轴轮式铰接车辆为研究对象,建立7自由度车辆动力学模型,提出双策略轨迹跟踪控制方法,上层策略求解拖车轨迹跟踪问题,下层策略优化挂车轨迹跟踪问题,兼顾了拖车和挂车的轨迹跟踪精度。为保证控制策略的计算实时性,利用有限时域近似动态规划近似求解上层轨迹跟踪策略,将在线优化问题转化为神经网络参数的离线预求解,降低在线求解耗时。与高保真度仿真软件的联合仿真实验表明:新方法使多轴铰接车辆轨迹跟踪精度提升了12.82%,策略单步求解耗时低于10ms,计算效率相比模型预测控制算法提升了约3个数量级。

关键词: 自动驾驶, 轨迹跟踪控制, 近似动态规划, 双层优化

Abstract:

Multi-axle articulated wheeled vehicles are prone to occurring “tail amplification” effects and lateral instability during trajectory tracking.The study of stable trajectory tracking for multi-axle articulated wheeled vehicles is of significant importance.For the multi-axle articulated wheeled vehicle,a 7-degree-of-freedom vehicle dynamics model is established,and a bi-level strategy trajectory tracking control method is proposed.The upper-level strategy is used to address the tractor trajectory tracking problem,while the lower-level strategy is used to optimize the trailer trajectory tracking,ensuring precise tracking for both tractor and trailer.To guarantee the real-time computation of the control strategy,the upper-level trajectory tracking strategy is solved using a finite-horizon approximate dynamic programming approach,and the online optimization problem is transformed into an offline pre-solution of parameters,thus reducing the time required for online solving.This approach significantly reduces online computation time.Co-simulation experiments with high fidelity simulation software demonstrate that the proposed method is used to improve the trajectory tracking accuracy of multi-axle articulated wheeled vehicles by 12.82%,and keep a single-step solution time below 10ms,enhancing computational efficiency by three orders of magnitude compared with the model predictive control algorithm.

Key words: self-driving, trajectory tracking, approximate dynamic programming, bi-level optimization

中图分类号: