欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (7): 240725-.doi: 10.12382/bgxb.2024.0725

• • 上一篇    下一篇

在弹道冲击条件下超高分子量聚乙烯纤维复合材料板破坏模式

甄泓1, 肖李军1,2,*(), 杜成鑫3, 宋卫东1   

  1. 1 北京理工大学 爆炸科学与安全防护全国重点实验室, 北京100081
    2 强度与结构完整性全国重点实验室, 陕西 西安 710065
    3 南京理工大学 机械工程学院, 江苏 南京 210094
  • 收稿日期:2024-08-25 上线日期:2025-08-12
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12372349); 国家自然科学基金项目(12002049); 国家自然科学基金项目(12172056); 瞬态冲击技术重点实验室基金项目(6142606211112); 强度与结构完整性全国重点实验室开放基金项目(LSSIKFJJ202404009)

Damage Modes of Ultra-High Molecular Weight Polyethylene Fiber Composite Plates under Ballistic Impact Conditions

ZHEN Hong1, XIAO Lijun1,2,*(), DU Chengxin3, SONG Weidong1   

  1. 1 State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
    2 National Key Laboratory of Strength and Structural Integrity, Xi’an 710065, Shaanxi, China
    3 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2024-08-25 Online:2025-08-12

摘要:

超高分子量聚乙烯因其轻质和超强的机械性能而广泛应用于防护领域,可以有效抵御弹丸冲击,然而其细观抗侵彻机理及弹道冲击破坏模式还有待进一步研究。主要以二维机织和单向超高分子量聚乙烯复合材料为研究对象,建立了考虑纤维复合材料细观结构特征的弹道冲击有限元分析模型,针对不同厚度、不同纤维铺层数的复合材料板开展了正/斜侵彻数值模拟,并与试验结果进行了对比分析,验证了数值模拟结果的可靠性。在此基础上,研究了复合材料板在不同冲击条件下的破坏模式与能量吸收特性。结果表明,不同速度下复合材料板的破坏模式大致相同,速度越低靶板的变形区域越大,靶板吸收的能量越少,这反映了材料在低速冲击下更趋向于发生大范围塑性变形而非局部脆性断裂;随着侵彻角度的减小,弹丸与目标材料的相互作用时间显著增加,促进了能量的传递与吸收。研究不仅深入探讨了超高分子量聚乙烯复合材料的弹道冲击力学响应,还明确了不同冲击条件下材料的破坏模式与能量吸收机制,为设计具有高效抗侵彻性能的复合材料靶板提供了坚实的理论基础。

关键词: 复合材料, 冲击动力学, 破坏机理, 有限元模拟

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is widely used in the protective field due to its lightweight and exceptional mechanical properties,which can effectively resist projectile impacts.However,the micro-scale anti-penetration mechanism and ballistic impact damage modes of UHMWPE remain to be further investigated. This study focuses on two-dimensional woven and unidirectional (UD) UHMWPE composites,establishing a finite element analysis model for ballistic impacts that considers the microstructural characteristics of fiber-reinforced composites.Numerical simulations of normal and oblique penetration were conducted for composite targets with varying thicknesses and fiber layer counts,and the results were compared with experimental data to verify their reliability.Subsequently,the damage modes and energy absorption characteristics of the composite plates under different impact conditions were investigated.The results indicate that the damage modes of the composite plates are similar across different speeds,with lower speeds resulting in larger deformation areas and less energy absorption,reflecting a tendency for the material to experience extensive plastic deformation rather than localized brittle fracture under low-speed impacts.As the penetration angle decreases,the interaction time between the projectile and the target material significantly increases,enhancing energy transfer and absorption.This study not only delves into the ballistic impact mechanical response of UHMWPE composites,but also clarifies the damage modes and energy absorption mechanisms of the material under different impact conditions,providing a solid theoretical foundation for the design of composite plates with high-efficiency anti-penetration performance.

Key words: composite materials, impact dynamics, destruction mechanism, finite element simulation