欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (7): 240710-.doi: 10.12382/bgxb.2024.0710

• • 上一篇    下一篇

基于MDEPSO算法的无人机三维航迹规划

肖鹏1,*(), 于海霞1, 黄龙2, 张司明1   

  1. 1 空军航空大学, 吉林 长春 130022
    2 31827部队, 北京 100195

3D Path Planning of Unmanned Aerial Vehicle Based on MDEPSO Algorithm

XIAO Peng1,*(), YU Haixia1, HUANG Long2, ZHANG Siming1   

  1. 1 Aviation University of Air Force, Changchun 130022, Jilin, China
    2 Unit 31827 of PLA, Beijing 100195, China
  • Received:2024-08-21 Online:2025-08-12

摘要:

针对经典粒子群算法在无人机三维航迹规划过程中全局搜索能力不足、易陷入局部最优等问题,研究提出一种多维增强粒子群优化算法。算法首先通过引入改善因子,在粒子寻优各个阶段实现动态调整惯性权重,提升种群适应性和克服局部最优能力;其次依靠动态约束方程实现学习因子增强,促使粒子间信息共享更为高效,改善算法自学习能力;随后有序融合混沌初始化和精英反向学习进化等策略优势,重新规划粒子群进化流程,增强粒子在迭代过程中的均衡性和多样性,提升算法收敛精度。实验中通过测试函数横向对比和复杂三维任务场景纵向应用,多维增强粒子群优化算法在新的多维目标函数指标中相较于经典粒子群算法无人机航迹规划能力获得了提升,在5种比对算法中表现出较好的有效性和竞争力。

关键词: 无人机, 航迹规划, 粒子群算法, 混沌, 精英反向学习策略

Abstract:

A multi-dimensional enhanced particle swarm optimization algorithm (MDEPSO) is proposed to address the problem of insufficient global search capability and susceptibility to local optima in the 3D trajectory planning process of unmanned aerial vehicles using classical particle swarm optimization algorithms.This algorithm first introduces improvement factors to dynamically adjust inertia weights in various stages of particle optimization,enhancing population adaptability and overcoming local optima; Secondly,relying on dynamic constraint equations to enhance learning factors promotes more efficient information sharing between particles and improves the algorithm’s self-learning ability; Subsequently,the advantages of orderly integration of chaos initialization and elite reverse learning evolution strategies were utilized to re plan the particle swarm evolution process,enhance the balance and diversity of particles in the iterative process,and improve the convergence accuracy of the algorithm.In the experiment,through horizontal comparison of test functions and vertical application in complex 3D task scenarios,the multi-dimensional enhanced particle swarm optimization algorithm showed an improvement in the UAV trajectory planning ability compared to the classical particle swarm algorithm in the new multi-dimensional objective function indicators.It demonstrated good effectiveness and competitiveness among the five comparison algorithms.

Key words: unmanned aerial vehicle, path planning, particle swarm optimization, chaos, elite backward learning strategy