[1] |
李玉雪, 田小涛, 马伊凡, 等. 不同粒径黑火药点火过程中与纤维素壳体材料的热相互作用[J]. 兵工学报, 2024, 45(5): 1582-1592.
doi: 10.12382/bgxb.2022.1060
|
|
LI Y X, TIAN X T, MA Y F, et al. Thermal interaction mechanisms of black powders with different particle sizes and cellulose as packing material during ignition[J]. Acta Armamentarii, 2024, 45(5): 1582-1592. (in Chinese)
doi: 10.12382/bgxb.2022.1060
|
[2] |
|
|
FENG Y, ZHOU Z L, WU C C, et al. Theoretical research on effect of desensitized coating on electrostatic interaction between explosive particle and conducting wall[J]. Acta Armamentarii, 2024(2024-04-18)[2024-05-07]. https://doi:10.12382/bgxb.2024.0189. (in Chinese)
|
[3] |
吴艳青, 鲍小伟, 王明扬, 等. RDX/HMX颗粒炸药落锤撞击点火-燃烧机理[J]. 爆炸与冲击, 2017, 37(2):339-346.
|
|
WU Y Q, BAO X W, WANG M Y, et al. Ignition and burning mechanisms of RDX/HMX particles subjected to drop-weight impact[J]. Explosion and Shock Waves, 2017, 37(2):339-346. (in Chinese)
|
[4] |
YOU S, CHEN M W, DLOTT D D, et al. Ultrasonic hammer produces hot spots in solids[J]. Nature Communications, 2015, 6:6581.
doi: 10.1038/ncomms7581
pmid: 25833057
|
[5] |
BAO X W, WU Y Q, WANG M Y, et al. Experimental investigations of mechanical and reaction responses for drop-weight impacted energetic particles[J]. Acta Mechanica Sinica, 2017, 33(1):1-6.
|
[6] |
王新颖, 王树山, 王绍慧, 等. 典型水中战斗部炸药装药跌落撞击响应特性[J]. 兵工学报, 2021, 42(增刊1):33-39.
|
|
WANG X Y, WANG S S, WANG S H, et al. Drop impac response characteristics of typical explosive charge in typical underwater warhead[J]. Acta Armamentarii, 2021, 42(S1):33-39. (in Chinese)
|
[7] |
王明扬, 吴艳青, 黄风雷, 等. RDX颗粒炸药低速撞击响应的试验研究[C]// 第六届全国强动载效应及防护学术会议暨2014年复杂介质/结构的动态力学行为创新研究群体学术研讨会. 中国, 北京: 中国力学学会, 2014: 10.
|
|
WANG M Y, WU Y Q, HUANG F L, et al. Experiments of RDX granular explosives subjected to drop-weight impact[C]// The 6th National Conference on Strong Dynamic Load Effects and Protection and the 2014 Innovative Research Group Symposium on Dynamic Mechanical Behavior of Complex Media/Structures. Beijing, China: the Chinese Society of Theoretical and Applied Mechanics, 2014:10. (in Chinese)
|
[8] |
张新明. 颗粒含能材料动态响应细观模型和实验研究[D]. 北京: 北京理工大学, 2012.
|
|
ZHANG X M. Mesoscale simulation and experimental study of dynamic response of granular energetic materials[D]. Beijing: Beijing Institute of Technology, 2012. (in Chinese)
|
[9] |
梁华琼, 周旭辉, 唐常良, 等. HMX钢模压制的微观结构演变的研究[J]. 含能材料, 2008(2):188-190.
|
|
LIANG H Q, ZHONG X H, TANG C L, et al. Microstructural evolution of HMX during pressing[J]. Energetic Material, 2008(2):188-190. (in Chinese)
|
[10] |
BURNSIDE N J, SON S F, ASAY B W, et al. Particle characterization of pressed granular HMX[J]. Shock Compression of Condensed Matter, 1997:571.
|
[11] |
陈鹏万. 高聚物黏结炸药的细观结构和力学性能[D]. 北京: 中国科学院力学研究所, 2001.
|
|
CHEN P W. The microstructure and mechanical properties of PBX[D]. Beijing: Institute of Mechanics, Chinese Academy of Sciences, 2001. (in Chinese)
|
[12] |
陈鹏万, 黄风雷. 含能材料损伤理论及应用[M]. 北京: 北京理工大学出版社, 2006.
|
|
CHEN P W, HUANG F L. Damage theory and application of energetic materials[M]. Beijing: Beijing Institute of Technology Press, 2006. (in Chinese)
|
[13] |
LIU Z W, XIE H M, LI K X, et al. Fracture behavior of PBX simulation subject to combined thermal and mechanical loads[J]. Polymer Testing, 2009, 28(6):627-635.
|
[14] |
SKIDMORE C B, PHILLIPS D S, HOWE P M, et al. The evolution of microstructural changes in pressed HMX explosives[R]. Los Alamos, NM, US: Los Alamos National Lab,1998.DOI: 10.2172/334323.
|
[15] |
|
|
HU Q S, SHANG H L, WU Z K, et al. Fracture mode and ignition response of PBX explosives under crack extrusion loading[J/OL]. Acta Armamentarii, 2024(2024-01-20)[2024-05-08]. https://doi.org/10.12382/bgxb.2023.0809. (in Chinese)
|
[16] |
罗景润. PBX的损伤、断裂及本构关系研究[D]. 绵阳: 中国工程物理研究院, 2001.
|
|
LUO J R. Study on Damage, Fracture and constitutive relation of PBX[D]. Mianyang: China Academy of Engineering Physics, 2001. (in Chinese)
|
[17] |
马军, 汪旭光, 李祥龙, 等. 不耦合装药刻痕爆破裂纹的动态力学特征及损伤分形规律实验[J]. 兵工学报, 2023, 44(12): 3676-3681.
doi: 10.12382/bgxb.2022.1270
|
|
MA J, WANG X G, LI X L, et al. Experiment on dynamic mechanical characteristics and damage fractal law of crack in decoupled charge scratch blasting[J]. Acta Armamentarii, 2023, 44(12): 3676-3686. (in Chinese)
doi: 10.12382/bgxb.2022.1270
|
[18] |
HAGAN J T, CHAUDHRI M M. Fracture surface energies of high explosives PETN and RDX[J]. Journal of Material Seienee, 1997, 12(5):1055-1058.
|
[19] |
PALMER S J P, FIELD J E. The deformation and fracture of β-HMX[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Seienees, 1982, 383(1785):399-407.
|
[20] |
BOUMA R H B, COUNTOIS A, VERBEEK H J, et al. Influence of mechanical damage on the shock sensitivity of plastic bonded explosives[C]// Proceedings of the 1999 Insensitive Munitions and Energetic Materials Technology Symposium. Posium, FL, US: TNO, 1999:183-191.
|
[21] |
CHARLES R J. Dynamic fatigue of glass[J]. Journal of Applied Physics, 1958, 29(12): 1657-1662.
|
[22] |
WIEGAND D A, PINTO J. The mechanical response of TNT and a composite, composition B, of TNT and RDX to compressive stress: Ⅰ uniaxial stress and yield[J]. Journal of Energetic Materials, 1991, 9(1): 19-80.
|
[23] |
PALMER S J P, FIELD J E, HUNTLEY J M. Deformation, strengths and strains to failure of polymer bonded explosives[J]. Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1993, 440(1909): 399-419.
|
[24] |
WIEGAND D A, PINTO J, NICOLAIDES S. The mechanical response of TNT and a composite, composition B, of TNT and RDX to compressive stress: I uniaxial stress and fracture[J]. Journal of Energetic Materials, 1991, 9(1/2): 19-80.
|
[25] |
李俊玲. PBX炸药装药的力学性能及损伤破坏研究[D]: 长沙: 国防科学技术大学, 2012.
|
|
LI J L. Study on PBX’s mechanical behavior and damage feature[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
|