[1] |
刘德斌, 王旦, 陈柏, 等. 外肢体机器人研究综述[J]. 浙江大学学报(工学版), 2021, 55(2): 251-258.
|
|
LIU D B, WANG D, CHEN B, et al. A survey of supernumerary robotic limbs[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(2): 251-258. (in Chinese)
|
[2] |
荆泓玮, 朱延河, 赵思恺, 等. 外肢体机器人研究现状及发展趋势[J]. 机械工程学报, 2020, 56(7): 1-9.
doi: 10.3901/JME.2020.07.001
|
|
JING H W, ZHU Y H, ZHAO S K, et al. Research status and development trend of supernumerary robotic limbs[J]. Journal of Mechanical Engineering, 2020, 56(7): 1-9. (in Chinese)
doi: 10.3901/JME.2020.07.001
|
[3] |
KAC E. Foundation and development of robotic art[J]. Art Journal, 1997, 56(3): 60-67.
|
[4] |
LLORENS-BONILLA B, PARIETTI F, ASADA H H. Demonstration-based control of supernumerary robotic limbs[C]// Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal: IEEE, 2012: 3936-3942.
|
[5] |
杨志谋, 陈浩, 周正, 等. 智能规划:未来战争智权之争的关键[J]. 指挥控制与仿真, 2022, 44(3): 1-6.
doi: 10.3969/j.issn.1673-3819.2022.03.001
|
|
YANG Z M, CHEN H, ZHOU Z, et al. Intelligent planning: the key to the dispute between intelligence and power in future wars[J]. Command Control & Simulation, 2022, 44(3): 1-6. (in Chinese)
|
[6] |
DAVENPORT C, PARIETTI F, ASADA H H. Design and biomechanical analysis of supernumerary robotic limbs[C]// Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 11th Motion and Vibration Conference. Fort Lauderdale, FL, US: ASME, 2012, 45295: 787-793.
|
[7] |
SASAKI T, SARAIJI M Y, FERNANDO C L, et al. MetaLimbs: metamorphosis for multiple arms interaction using artificial limbs[C]// Proceedings of the SIGGRAPH’17 Posters. Los Angeles, CA, US: ACM, 2017: 1-2.
|
[8] |
ZHANG Q H, ZHU Y H, ZHAO X, et al. Design of reconfigurable supernumerary robotic limb based on differential actuated joints[J]. International Journal of Computer and Information Engineering, 2020, 14(4): 115-122.
|
[9] |
赵思恺, 李长乐, 张宗伟, 等. 模块化可重构外肢体机器人[J]. 仪器仪表学报, 2021, 42(4): 218-227.
|
|
ZHAO S K, LI C L, ZHANG Z W, et al. Modular and reconfigurable supernumerary robotic limbs[J]. Chinese Journal of Scientific Instrument, 2021, 42(4): 218-227. (in Chinese)
|
[10] |
VATSAL V, HOFFMAN G. Biomechanical motion planning for a wearable robotic forearm[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 5024-5031.
|
[11] |
DING Z Y, YOSHIDA S, TORII T, et al. Xlimb: wearable robot arm with storable and extendable mechanisms[C]// Proceedings of the 12th Augmented Human International Conference. Geneva, Switzerland: ACM, 2021: 1-4.
|
[12] |
NGUYEN P H, SPARKS C, NUTHI S G, et al. Soft poly-limbs: toward a new paradigm of mobile manipulation for daily living tasks[J]. Soft Robotics, 2019, 6(1): 38-53.
doi: 10.1089/soro.2018.0065
pmid: 30307793
|
[13] |
LIANG X Q, YAP H K, GUO J, et al. Design and characterization of a novel fabric-based robotic arm for future wearable robot application[C]// Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics. Macau SAR, China: IEEE, 2017: 367-372.
|
[14] |
WU F Y, ASADA H H. Supernumerary robotic fingers: an alternative upper-limb prosthesis[C]// Proceedings of the ASME 2014 Dynamic Systems and Control Conference. San Antonio, TX, US: ASME, 2014, 46193: V002T16A009.
|
[15] |
PRATTICHIZZO D, MALVEZZI M, HUSSAIN I, et al. The sixth-finger: a modular extra-finger to enhance human hand capabilities[C]// Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication. Edinburgh, Scotland, UK: IEEE, 2014: 993-998.
|
[16] |
CUNNINGHAM J, HAPSARI A, GUILLEMINOT P, et al. The supernumerary robotic 3rd thumb for skilled music tasks[C]// Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) Enschede, The Netherlands: IEEE, 2018: 665-670.
|
[17] |
TIZIANI L, HART A, CAHOON T, et al. Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist devices[J]. The International Journal of Robotics Research, 2017, 36(13/14): 1391-1413.
|
[18] |
LIU S C, ZHU Y M, ZHANG Z C, et al. Otariidae-inspired soft-robotic supernumerary flippers by fabric kirigami and origami[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(5): 2747-2757.
|
[19] |
PARIETTI F, CHAN K C, HUNTER B, et al. Design and control of supernumerary robotic limbs for balance augmentation[C]// Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Washington State Convention Center Seattle, Washington, US: IEEE, 2015: 5010-5017.
|
[20] |
KUREK D A, ASADA H H. The MantisBot: design and impedance control of supernumerary robotic limbs for near-ground work[C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 5942-5947.
|
[21] |
HAO M, ZHANG J W, CHEN K, et al. Supernumerary robotic limbs to assist human walking with load carriage[J]. Journal of Mechanisms and Robotics, 2020, 12(6): 061014.
|
[22] |
KHAZOOM C, CAILLOUETTE P, GIRARD A, et al. A supernumerary robotic leg powered by magnetorheological actuators to assist human locomotion[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 5143-5150.
|
[23] |
CIULLO A S, FELICI F, CATALANO M G, et al. Analytical and experimental analysis for position optimization of a grasp assistance supernumerary robotic hand[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4305-4312.
|
[24] |
DING Z Y, YOSHIDA S, CHONG T, et al. Auglimb: compact robotic limb for human augmentation: arXiv:2109.00133v1[R/OL]. Ithaca, NY, US: Cornell University, 2018 (2018-04-08) [2021-09-1]. https://arxiv.org/abs/2109.00133.
|
[25] |
KOJIMA A, YAMAZOE H, LEE J H. Wearable robot arm with consideration of weight reduction and practicality[J]. Journal of Robotics and Mechatronics, 2020, 32(1): 173-182.
|
[26] |
NAKABAYASHI K, IWASAKI Y, IWATA H. Development of evaluation indexes for human-centered design of a wearable robot arm[C]// Proceedings of the 5th International Conference on Human Agent Interaction. New York, NY, US: ACM, 2017: 305-310.
|
[27] |
PENALOZA C, HERNANDEZ-CARMONA D, NISHIO S. Towards intelligent brain-controlled body augmentation robotic limbs[C]// Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics.Miyazaki, Japan: IEEE, 2018: 1011-1015.
|
[28] |
HUSSAIN I, SPAGNOLETTI G, SALVIETTI G, et al. An EMG interface for the control of motion and compliance of a supernumerary robotic finger[J]. Frontiers in Neurorobotics, 2016, 10: 1-13.
|
[29] |
XIE H R, MITSUHASHI K, TORII T. Augmenting human with a tail[C]// Proceedings of the 10th Augmented Human International Conference 2019. Reims, France: ACM, 2019: 1-7.
|
[30] |
WU F Y, ASADA H H. Implicit and intuitive grasp posture control for wearable robotic fingers: a data-driven method using partial least squares[J]. IEEE Transactions on Robotics, 2016, 32(1): 176-186.
|
[31] |
FAN Z X, LIN C Y, FU C L. A gaze signal based control method for supernumerary robotic limbs[C]// Proceedings of the 2020 3rd International Conference on Control and Robots.Tokyo, Japan: IEEE, 2020: 107-111.
|
[32] |
LI H B, LI Z, HE L, et al. Wearable extra robotic limbs: a systematic review of current progress and future prospects[J]. Journal of Intelligent & Robotic Systems, 2023, 109(1): 16, (2023).
|
[33] |
原大川, 王涛, 李丽君, 等. 单兵班组多平台协同作战应用研究[J]. 火力与指挥控制, 2019, 44(6): 148-152.
|
|
YUAN D C, WANG T, LI L J, et al. Cooperative engagement operation research on soldier squad and multiple platforms[J]. Fire Control & Command Control, 2019, 44(6): 148-152. (in Chinese)
|