[1] LI X, HUANG H Z, LI X Y,et al. Reliability evaluation for the C4ISR communication system via propagation model[C]∥Proceedings of 2019 Annual Reliability and Maintainability Symposium. Orlando, FL, US: IEEE, 2019. [2] OUYANG S J, DAI Z J, YAN C X,et al. Operational effectiveness evaluation of maritime C4ISR system based on system dyna-mics [C]∥Proceedings of the 37th Chinese Control Conference. Wuhan, China: IEEE, 2018: 8583-8588. [3] JIAO Z, YAO P. Capability construction of C4ISR based on AI planning[J]. IEEE Access, 2019, 7: 31997-32008. [4] XIAO B, LUO P C, CHENG Z J, et al. Systematic combat effectiveness evaluation model based on xg-boost[C]∥Proceedings of International Conference on Reliability Maintainability and Safety. Shanghai, China: IEEE, 2018: 130-134. [5] HILL R, TOLK A. Open challenges in building combat simulation systems to support test, analysis and training[C]∥Proceedings of 2018 Winter Simulation Conference. Gothenburg, Sweden: IEEE, 2018: 3730-3741. [6] NIU H, SONG Y, WANG R, et al. Research on integrated simulation training system for warship communication[C]∥Proceedings of International Conference on Smart Grid and Electrical Automation. Changsha, China: IEEE, 2017: 533-537. [7] KAYA A, OZTURK R, GUMUSSOY C. Usability measurement of mobile applications with system usability scale[C]∥Proceedings of Industrial Engineering in the Big Data Era. Nevsehir, Turkey: Springer, 2019:345-358. [8] JEON B J, Kim H W. An exploratory study on the sharing and application of public open big data[J]. Information Policy, 2017, 24(3): 27-41. [9] MIN M. Modeling and implementation of public open data in NoSQL database[J]. International Journal of Internet, Broadcasting and Communication, 2018, 10(3):51-58. [10] MIN M. A data design for increasing the usability of subway public data[J]. International Journal of Internet, Broadcasting and Communication, 2019, 11(4):18-25. [11] HUANG M, LI L L, XUAN P. Evaluating data consistency with matching dependencies from multiple sources[C]∥Proceedings of International Conference on Power Data Science. Taizhou, China: IEEE, 2019: 6-10. [12] MA S, FAN W F, BRAVO L.Extending inclusion dependencies with conditions [J]. Theoretical Computer Science, 2014, 515(1): 64-95. [13] LI L L, LI J Z, GAO H.Evaluating entity-description conflict on duplicated data [J]. Journal of Combinatorial Optimization, 2016, 31(2): 918-941. [14] ZHANG Y, WANG H Z, GAO H. Efficient accuracy evaluation for multi-modal sensed data[J]. Journal of Combinatorial Optimization, 2016,32(4):1068-1088. [15] 聂凯, 栾瑞鹏. 基于数据增强的仿真模型验证方法[J].指挥控制与仿真, 2019, 41(3): 92-96. NIE K, LUAN R P. Validation method of simulation models based on data augmentation [J]. Command Control & Simulation, 2019, 41(3): 92-96.(in Chinese) [16] TRAGANITIS P, SLAVAKIS K. Big data clustering via random sketching and validation[C]∥Proceedings of Asilomar Conference on Signals Systems and Computers. Pacific Grove, CA, US: IEEE, 2014: 1046-1050. [17] PACKIANATHER M, KAPOOR B. A wrapper-based feature selection approach using bees algorithm for a wood defect classification system[C]∥Proceedings of System of Systems Engineering Conference. San Antonio, TX, US: IEEE, 2015: 498-503. [18] LI J X, RAJAN D, YANG J. Local feature embedding for supervised image classification[C]∥Proceedings of IEEE International Conference on Image Processing. Quebec City, QC, Canada: IEEE, 2015: 1300-1304. [19] LU M T, YIN J F. A feature metric algorithm combining the wasserstein distance and mutual information[C]∥Proceedings of IEEE International Conference on Progress in Informatics and Computing. Suzhou, China: IEEE, 2018: 154-157. [20] HOSSAIN M A, PICKERING M. Unsupervised feature extraction based on a mutual information measure for hyperspectral image classification[C]∥Proceedings of International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada:IEEE, 2011:1720-1723. [21] ZENG Z L, ZHANG H J, ZHANG R, et al. A novel feature selection method considering feature interaction[J]. Pattern Recognition, 2015,48(8): 2656-2666. [22] RAO Q, YU B, HE K, et al. Regularization and iterative initia-lization of SoftMax for fast training of convolutional neural networks[C]∥Proceedings of International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2019: 19028828. [23] HLANDER K. Supporting tensor symmetries in EinSum[J]. Computers & Mathematics with Applications, 2003, 45(4):789-803. [24] BODMANN B G, SINGH P K. Burst erasures and the mean-square error for cyclic parseval frames[J]. IEEE Transactions on Information Theory, 2011, 57(7):4622-4635. [25] ALI S S, GHANI M U. Handwritten digit recognition using DCT and HMMs[C]∥Proceedings of International Conference on Frontiers of Information Technology. Islamabad, Pakistan: IEEE, 2014: 303-306. [26] GOODFELLOW I J, POUGET-ABADIE J,MIRZA M, et al. Generative adversarial nets[C]∥Proceedings of the 28th Annual Conference on Neural Information Processing Systems. Montreal, Canada: Neural Information Processing Systems Foundation, Inc., 2014: 2672-2680. [27] MUDAVATHU K D B, CHANDRA SEKHARARAO M, RAMANA K V. Auxiliary conditional generative adversarial networks for image data set augmentation[C]∥Proceedings of International Conference on Inventive Computation Technologies. Coimbatore, India: IEEE, 2018: 263-269.
|