[1] KAPAHI A, SAMBASIVAN S, UDAYKUMAR H. A three-dimensional sharp interface Cartesian grid method for solving high speed multi-material impact, penetration and fragmentation problems[J]. Journal of Computational Physics, 2013, 241: 308-332. [2] SAMBASIVAN S, KAPAHI A, UDAYKUMAR H. Simulation of high speed impact, penetration and fragmentation problems on locally refined Cartesian grids[J]. Journal of Computational Physics, 2013, 235: 334-370. [3] SAMBASIVAN S, UDAYKUMAR H. A sharp interface method for high-speed multi-material flows: strong shocks and arbitrary materialpairs[J]. International Journal of Computational Fluid Dynamics, 2011, 25(3): 139-162. [4] CHEN Q Y, LIU K X. A high-resolution Eulerian method for numerical simulation of shaped charge jet including solid-fluid coexistence and interaction[J]. Computers & Fluids, 2012, 56: 92-101. [5] CHEN Q Y, WANG J T, LIU K X. Improved CE/SE scheme with particle level set method for numerical simulation of spall fracture due to high-velocity impact[J]. Journal of Computational Physics, 2010, 229(19): 7503-7519. [6] 陈千一. 层裂与成型装药金属射流问题的数值分析[D]. 北京:北京大学, 2011. CHEN Q Y. Numerical analysis of spall fracture and shaped charge jet[D]. Beijing: Peking University, 2011. (in Chinese) [7] 丁建许. 爆炸与冲击问题的高精度界面处理及数值研究[D]. 北京:北京理工大学, 2017. DING J X. The high order inerfacial treatment and numerical investigation of explosion and impact problem[D]. Beijing: Beijing Institute of Technology, 2017. (in Chinese) [8] 王仲琦. 面向对象的爆炸力学 Euler 型多物质数值方法及其应用研究[D]. 北京:北京理工大学, 2000. WANG Z Q. Object-oriented Euler multi-material numerical met-hods on and its applications[D]. Beijing: Beijing Institute of Technology, 2000. (in Chinese) [9] BANKS J R. On exact conservation for the Euler equations with complex equations of state[J]. Communications in Computational Physics, 2010, 8(5): 995. [10] KAMM J. Solution of the 1D Riemann problem with a general EOS in ExactPack[C]∥Proceedings of the 4th ASME Conference on Verification and Validation of Simulations. Las Vegas,NV, US:LANL, 2015. [11] DESPRES B. A geometrical approach to nonconservative shocks and elastoplastic shocks[J]. Archive for Rational Mechanics and Analysis, 2007, 186(2): 275-308. [12] GAVRILYUK S, FAVRIE N, SAUREL R. Modelling wave dynamics of compressible elastic materials[J]. Journal of Computational Physics, 2008, 227(5): 2941-2969. [13] KAMM J. FLAG simulations of the elasticity test problem of Gavrilyuk et al[R]. Los Alamos, NV,US: Los Alamos National Laboratory,2014. [14] LIN X, BALLMANN J. A Riemann solver and a second-order Godunov method for elasticplastic wave propagation in solids[J]. International Journal of Impact Engineering, 1993, 13(3): 463-478. [15] TRANGENSTEIN J, COLELLA P. A higher-order Godunov method for modeling finite deformation in elastic-plastic solids[J]. Communications on Pure and Applied Mathematics, 1991, 44(1): 41-100. [16] ABUZYAROV M, BAZHENOV V, KOTOV V. A Godunov-type method in dvnamics of elastoplastic media[J]. Computational Mathematics and Mathematical Physics, 2000, 40(6): 900-913. [17] BAZHENOV V, KOTOV V. Modification of Godunov's numerical scheme for solving problems of pulsed loading of soft soils[J]. Journal of Applied Mechanics and Technical Physics, 2002, 43(4): 603-611. [18] MENSHOV I, MISCHENKO A, SEREJKIN A. Numerical mo-deling of elastoplastic flows by the Godunov method on moving Eulerian grids[J]. Mathematical Models and Computer Simulations, 2014, 6(2): 127-141. [19] TANG H S, HUANG D. A second-order accurate capturing scheme for 1D inviscid flows of gas and water with vacuum zones[J]. Journal of Computational Physics, 1996, 128(2): 301-318. [20] LIU T G, XIE W F, KHOO B C. The modified ghost fluid method for coupling of fluid and structure constituted with hydro-elasto-plastic equation of state[J]. SIAM Journal on Scientific Computing, 2008, 30(3): 1105-1130. [21] GAO S, LIU T G. 1D exact elastic-perfectly plastic solid Riemann solver and its multimaterial application[J]. Advances in Applied Mathematics and Mechanics, 2017, 9(3): 621-650. [22] GAO S, LIU T G, YAO C B. A complete list of exact solutions for one-dimensional elasticperfectly plastic solid Riemann problem without vacuum[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 63: 205-227. [23] BERJAMIN H. Analytical solution to 1D nonlinear elastodynamics with general constitutive laws[J]. Wave Motion, 2017, 74: 35-55. [24] HATTORI H. The Riemann problem for thermoelastic materials with phase change[J]. Journal of Differential Equations, 2004, 205(1): 229-252. [25] FENG Z, KABOUDIAN A, RONG J. The simulation of compressible multi-fluid multi-solid interactions using the modified ghost method[J]. Computers & Fluids, 2017, 154(5): 12-26. [26] FENG Z, RONG J, KABOUDIAN A. The modified ghost method for compressible multimedium interaction with elastic-plastic solid[J]. Communications in Computational Physics, 2017, 22(5): 1258-1285. [27] TORO E F. Riemann solvers and numerical methods for fluid dynamics[M]. Berlin, Germany: Springer, 2009: 102-200. [28] FEHLBERG E. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems: R-315[R]. Washington, DC,US: NASA, 1969. [29] MATHEWS J H, FINK K D. Numerical methods using MATLAB[M]. Upper Saddle River, NJ,US: Pearson Prentice Hall, 2004. [30] GUO Y H, LI R, YAO C B. A numerical method on Eulerian grids for two-phase compressible flow[J]. Advances in Applied Mathematics and Mechanics, 2016, 8(2):187-212. [31] DI Y N, LI R, TANG T. Level set calculations for incompressible two-phase flows on a dynamically adaptive grid[J]. Journal of Scientific Computing, 2007, 31(1):75-98. [32] LIU T G, XIE W F, KHOO B C. The modified ghost fluid method for coupling of fluid and structure constituted with hydro elastoplastic equation of state [J]. SIAM Journal on Scientific Computing, 2008, 30(3): 1105-1130. [33] 郝宝田. 地下核爆炸及其作用[M]. 北京:国防工业出版社, 2002. HAO B T. Underground explosions and application [M]. Beijing: National Defense Industry Press, 2002. (in Chinese) [34] 姚成宝, 王宏亮, 浦锡锋,等. 空中强爆炸冲击波地面反射规律数值模拟研究[J]. 爆炸与冲击, 2019, 39(11): 112201-1-112201-8. YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground[J]. Explosion and Shock Waves, 2019, 39(11): 112201-1-112201-8. (in Chinese) [35] 乔登江. 核爆炸物理概论[M]. 北京:国防工业出版社, 2003:51-55. QIAO D J. An introduction to nuclear explosion physics[M]. Beijing: National Defense Industry Press, 2003:51-55. (in Chinese) [36] GLASSTONE S, DOLAN P J. The effects of nuclear weapons [M]. US: United States Department of Defense and the Energy Research and Development Administration, 1977: 453-501. [37] 江松,王瑞利. 多介质可压缩流体力学的若干测试基准问题[R]. 北京:北京应用物理与计算数学研究所, 2013. JIANG S, WANG R L. Several benchmark problems of compressible multi-material fluid dynamics[R]. Beijing:Institute of Applied Physics and Computational Mathematics, 2013. (in Chinese)
|