[1] 李广武, 赵继伟, 杜春兰, 等. 常规导弹弹药安全性考核与技术[M]. 北京: 中国宇航出版社, 2015: 45-118. LI G W, ZHAO J W, DU C L, et al. Conventional missile ammunition safety assessment and technology[M]. Beijing: China Astronautic Publishing House, 2015: 45-118. (in Chinese) [2] HO S Y. Thermomechanical properties of rocket propellants and correlation with cookoff behaviour[J]. Propellants, Explosives, Pyrotechnics, 1995, 20(4): 206-214. [3] GILLARD P, LONGUET B. Investigation of heat transfer and heterogeneous reactions during the slow cook off of a composite propellant[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1506-1514. [4] CARO R I, BELLERBY J M. Behavior of hydroxyl-terminated polyether (HTPE) composite rocket propellants in slow cook-off[J]. International Journal of Energetic Materials and Chemical Propulsion, 2008,7(3): 171-185. [5] KOMAI I, SATO W. Reaction mechanisms in slow cook-off tests of GAP/AP propellants[C]∥Proceedings of Insensitive Munitions and Energetic Materials Technology Symposium. Bristol, UK: [s.n.], 2006. [6] 陈中娥, 唐承志, 赵孝彬. 固体推进剂的慢速烤燃行为与热分解特性的关系研究[J]. 含能材料, 2005, 13(6): 393-396. CHEN Z E, TANG C Z, ZHAO X B. Relationship between slow cook-off behaviour and thermal decomposition characteristics of solid propellant[J]. Chinese Journal of Energetic Materials, 2005, 13(6): 393-396. (in Chinese) [7] 赵孝彬, 李军, 程立国, 等. 固体推进剂慢速烤燃特性的影响因素研究[J]. 含能材料, 2011, 19(6): 669-672. ZHAO X B, LI J, CHENG L G, et al. Influence factors of slow cook-off characteristic for solid propellant[J]. Chinese Journal of Energetic Materials, 2011, 19(6): 669-672. (in Chinese) [8] 智小琦, 胡双启. 炸药装药密度对慢速烤燃响应特性的影响[J]. 爆炸与冲击, 2013, 33(2): 221-224. ZHI X Q, HU S Q. Influences of charge densities on responses of explosives to slow cook-off[J]. Explosion and Shock Waves, 2013, 33(2): 221-224. (in Chinese) [9] 李娟娟, 胡双启, 王东青, 等. 装药密度对钝化黑索今慢速烤燃特性的影响[J]. 弹箭与制导学报, 2009, 29(6): 125-126. LI J J, HU S Q, WANG D Q, et al. Influences of slow cook-off characteristics of passivation RDX at different charge density[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(6): 125-126. (in chinese)
[10] 胡双启, 解朝变, 智小琦. 装药密度与壳体约束对钝化RDX慢速烤燃特性的影响[J]. 火炸药学报, 2011, 34(2): 26-28. HU S Q, XIE Z B, ZHI X Q. Effect of charge density and restriction of shell on slow cook-off characteristics of passive RDX[J]. Chinese Journal of Explosives & Propellants, 2011, 34(2): 26-28. (in Chinese) [11] 张亚坤, 智小琦, 李强, 等. 烤燃温度对凝聚炸药热起爆临界温度影响的研究[J]. 弹箭与制导学报, 2014, 34(1): 69-72. ZHANG Y K, ZHI X Q, LI Q, et al. Study of cook-off temperature effects on condensed explosives concerning the critical temperature of hot spots detonation[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(1): 69-72. (in Chinese) [12] 冯晓军, 王晓峰, 韩助龙. 炸药装药尺寸对慢速烤燃响应的研究[J]. 爆炸与冲击, 2005, 25(3): 285-288. FENG X J, WANG X F, HAN Z L. The study of charging size influence on the response of explosives in slow cook-off test[J]. Explosion and Shock Waves, 2005, 25(3): 285-288. (in Chinese) [13] 高峰, 智小琦, 刘学柱, 等. 物理界面对炸药慢速烤燃特性的影响[J]. 火炸药学报, 2014, 37(6): 53-57. GAO F, ZHI X Q, LIU X Z, et al. Effect of physical interface on slow cook-off characteristics of explosives[J]. Chinese Journal of Explosives & Propellants, 2014, 37(6): 53-57. (in Chinese) [14] 田轩, 黄亚峰, 王晓峰, 等. FOX-7与RDX混合比例对压装炸药慢速烤燃及冲击波感度的影响[J]. 爆破器材, 2019, 48(1): 38-41. TIAN X, HUANG Y F, WANG X F, et al. Influence of mixture ratio of FOX-7 and RDX on slow cook-off and shock sensitivity of pressed explosives[J]. Explosive Materials, 2019, 48(1): 38-41. (in Chinese) [15] 隋树元, 王树山. 终点效应学[M]. 北京: 国防工业出版社, 2000: 279-293. SUI S Y, WANG S S. Terminal effects[M]. Beijing: National Defense Industry Press, 2000: 279-293. (in Chinese)
第41卷 第2期2020 年2月兵工学报ACTA ARMAMENTARIIVol.41No.2Feb.2020
|