[1] 李世强. 分层梯度多孔金属夹芯结构的冲击力学行为[D]. 太原:太原理工大学, 2015. LI Shi-qiang. The dynamic behavior of sandwich structure with layered graded porous metallic cores[D]. Taiyuan:Taiyuan University of Technology, 2015.(in Chinese) [2] Gardner N, Wang E, Shukla A. Performance of functionally graded sandwich composite beams under shock wave loading[J]. Composite Structures, 2012, 94(5): 1755-1770. [3] Zhang J, Zhao G P, Lu T J. Dynamic responses of sandwich beams with gradient-density aluminum foam cores[J]. International Journal of Protective Structures, 2011, 2(4): 439-451. [4] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响[J]. 爆炸与冲击, 2013, 33(2): 163-168. WU He-xiang, LIU Ying. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials[J]. Explosion and Shock Waves, 2013, 33(2): 163-168. (in Chinese) [5] Liu X R, Tian X G, Lu T J, et al. Blast resistance of sandwich-walled hollow cylinders with graded metallic foam cores[J]. Composite Structures, 2012, 94(8): 2485-2493. [6] Liu X R, Tian X G, Lu T J, et al. Sandwich plates with functionally graded metallic foam cores subjected to air blast loading[J]. International Journal of Mechanical Sciences, 2014, 84: 61-72. [7] Li S Q, Wang Z H, Wu G Y, et al. Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading[J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 262-271. [8] Li S Q, Lu G X, Wang Z H, et al. Finite element simulation of metallic cylindrical sandwich shells with graded aluminum tubular cores subjected to internal blast loading[J]. International Journal of Mechanical Sciences, 2015, 96/97: 1-12. [9] Li S Q, Li X, Wang Z, et al. Finite element analysis of sandwich panels with stepwise graded aluminum honeycomb cores under blast loading[J]. Composites Part A: Applied Science and Manufacturing, 2016, 80:1-12.
[10] Wiernicki C J, Liem F, Woods G D, et al. Structural analysis methods for lightweight metallic corrugated core sandwich panels subjected to blast loads[J]. Naval Engineers Journal, 1991,103(3): 192-202. [11] Lamb G. High-speed, small naval vessel technology development plan[R]. Bethesda, MD: Naval Surface Warfare Center, 2003. [12] Xue Z Y, Hutchinson J W. A comparative study of impulse-resistant metal sandwich plates[J].International Journal of Impact Engineering, 2004, 30(10): 1283-1305. [13] Wadley H N G, Brvik T, Olovsson L, et al. Deformation and fracture of impulsively loaded sandwich panels[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2):674-699. [14] Zhang P, Cheng Y S, Liu J,et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading[J]. Marine Structures, 2015, 40: 225-246. [15] Vaziri A, Hutchinson J W. Metal sandwich plates subject to intense air shocks[J]. International Journal of Solids and Structures, 2007, 44(6):2021-2035. [16] Jones N, Uran T O, Tekin S A. The dynamic plastic behavior of fully clamped rectangular plates[J]. International Journal of Solids and Structures, 1970, 6(12): 1499-1512. [17] Tagarielli V L, Deshpande V S, Fleck N A. The high strain rate response of PVC foams and end-grain balsa wood[J]. Composites Part B: Engineering, 2008, 39(1): 83-91. [18] Yazici M, Wright J, Bertin D, et al. Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading[J]. Composite Structures, 2014, 110:98-109.
第38卷 第6期2017 年6月兵工学报ACTA ARMAMENTARIIVol.38No.6Jun.2017
|