欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

复杂环境下基于同步DMPC的异构无人集群分组编队控制

何云风, 卢建华, 史贤俊*(), 吕佳朋   

  1. (海军航空大学, 山东 烟台 264001)
  • 收稿日期:2024-12-17 修回日期:2025-04-14
  • 通讯作者: *邮箱:sxjaa@sina.com
  • 基金资助:
    国家自然科学基金项目(61903374、62403486)

Grouping Formation Control for Heterogeneous Unmanned Swarm Based on Synchronous DMPC in Complex Environment

HE Yunfeng, LU Jianhua, SHI Xianjun*(), LÜ Jiapeng   

  1. (Naval Aviation University, Yantai 264001, Shandong, China)
  • Received:2024-12-17 Revised:2025-04-14

摘要: 针对复杂环境下的异构无人集群分组编队问题,提出一种基于同步分布式模型预测控制(Distributed Model Predictive Control, DMPC)的编队控制算法。以异构集群为研究对象,建立分组分层控制框架;针对环境中同时存在的障碍、故障和干扰,给出对应的避障策略、故障隔离策略和干扰补偿方法,并结合控制框架将其整合为完整可行的编队控制方案。根据编队控制方案,基于同步DMPC理论、速度障碍法和干扰观测器理论,设计了集避障、容错、抗扰于一体的异构无人集群分组编队控制算法,并证明了算法下集群的稳定性和干扰估计误差的有界收敛性。仿真结果表明:所设计算法下的异构无人集群在复杂环境下兼具良好的避障、故障容错和抗干扰能力。

关键词: 异构无人集群, 分组编队控制, 同步分布式模型预测控制, 避障, 故障容错, 干扰观测器

Abstract: To address the problem of grouping formation control (GFC) for heterogeneous unmanned swarm in complex environments, a formation control algorithm based on synchronous distributed model predictive control (DMPC) is proposed. A grouping and layering control framework is established for heterogeneous swarm as the research object. Corresponding obstacle avoidance strategy, fault isolation strategy, and disturbance compensation method are proposed for the simultaneous existence of obstacles, faults, and disturbances in the environment, and integrated into a complete and feasible formation control scheme based on the control framework. According to the formation control scheme, based on the synchronous DMPC theory, velocity obstacle (VO) method, and disturbance observer (DOB) theory, a heterogeneous unmanned swarm GFC algorithm is designed, which integrates obstacle avoidance, fault tolerance, and disturbance resistance. The stability of the swarm under the algorithm and the bounded convergence of disturbance estimation error are proved. The simulation results show that the heterogeneous unmanned swarm under the designed algorithm has good ability of obstacle avoidance, fault tolerance and disturbance resistance in complex environment.

Key words: heterogeneous unmanned swarm, grouping formation control, synchronous distributed model predictive control, obstacle avoidance, fault tolerance, disturbance observer

中图分类号: