[1] |
BRIGHTON C H, KLOEPPER L N, HARDING C D, et al. Raptors avoid the confusion effect by targeting fixed points in dense aerial prey aggregations[J]. Nature Communications, 2022, 13(1):4778.
doi: 10.1038/s41467-022-32354-5
pmid: 35999203
|
[2] |
曹子建, 孙泽龙, 闫国闯, 等. 基于强化学习的无人机集群对抗策略推演仿真[J]. 兵工学报, 2023, 44(增刊2):126-134.
|
|
CAO Z J, SUN Z L, YAN G C, et al. Simulation of reinforcement learning-based UAV swarm adversarial strategy deduction[J]. Acta Armamentarii, 2023, 44(S2):126-134. (in Chinese)
doi: 10.12382/bgxb.2023.0877
|
[3] |
ALONSO-MORA J, BAKER S, RUS D. Multi-robot formation control and object transport in dynamic environments via constrained optimization[J]. The International Journal of Robotics Research, 2017, 36(9):1000-1021.
|
[4] |
赵彦杰, 袁菀迈, 梁月乾. 智能无人集群:改变未来战争的颠覆性力量[M]. 北京: 电子工业出版社, 2024:289-297.
|
|
ZHAO Y J, YUAN W M, LIANG Y Q. Intelligent unmanned swarm:a game-changer for future wars[M]. Beijing: Publishing House of Electronics Industry, 2024:289-297. (in Chinese)
|
[5] |
王晶, 顾维博, 窦立亚. 基于Leader-Follower的多无人机编队轨迹跟踪设计[J]. 航空学报, 2020, 41(增刊1):723758.
|
|
WANG J, GU W B, DOU L Y. Leader-follower formation control of multiple UAVs with trajectory tracking design[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723758.
doi: 10.7527/S1000-6893.2019.23758
|
[6] |
LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4:387-403.
|
[7] |
周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学:技术科学, 2017, 47(3):230-238.
|
|
ZHOU Z W, DUAN H B, FAN Y M. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Science in China:Technical Sciences, 2017, 47(3):230-238. (in Chinese)
|
[8] |
周子为. 基于雁群行为机制的多无人机编队及验证[D]. 北京: 北京航空航天大学, 2017.
|
|
ZHOU Z W. Unmanned aerial vehicle close formation control and verification based on the behavior mechanism in wild geese[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2017. (in Chinese)
|
[9] |
REYNOLDS C W. Flocks,herds and schools:A distributed behavioral model[C]// Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. 1987:25-34.
|
[10] |
VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6):1226.
pmid: 10060237
|
[11] |
OLFATI-SABER R. Flocking for multi-agent dynamic systems:algorithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3):401-420.
|
[12] |
CHAZELLE B. The convergence of bird flocking[J]. Journal of the ACM, 2014, 61(4):1-35.
|
[13] |
JENIE Y I, VAN KAMPEN E J, ELLERBROEK J, et al. Taxonomy of conflict detection and resolution approaches for unmanned aerial vehicle in an integrated airspace[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(3):558-567.
|
[14] |
MITICI M, BLOM H A P. Mathematical models for air traffic conflict and collision probability estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(3):1052-1068.
|
[15] |
KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4):179-189.
|
[16] |
CHAKRAVARTHY A, GHOSE D. Obstacle avoidance in a dynamic environment:a collision cone approach[J]. IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans, 1998, 28(5):562-574.
|
[17] |
韩煜, 宋韬, 郑多, 等. 基于冲突触发避碰机制的无人飞行器集群协同制导技术[J]. 兵工学报, 2023, 44(7):1881-1895.
doi: 10.12382/bgxb.2022.0152
|
|
HAN Y, SONG T, ZHENG D, et al. Unmanned aerial vehicle cluster cooperative guidance technology based on conflict trigger Mmechanism[J]. Acta Armamentarii, 2023, 44(7):1881-1895. (in Chinese)
doi: 10.12382/bgxb.2022.0152
|
[18] |
ONG H Y, KOCHENDERFER M J. Markov decision process-based distributed conflict resolution for drone air traffic management[J]. Journal of Guidance,Control,and Dynamics, 2017, 40(1):69-80.
|
[19] |
KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1):90-98.
|
[20] |
VELAGAPUDI P, SYCARA K, SCERRI P. Decentralized prioritized planning in large multirobot teams[C]// Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington,D.C.,US:IEEE, 2010:4603-4609.
|
[21] |
SHI Q, LI T S, LI J Q, et al. Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems[J]. Neurocomputing, 2019, 350:282-290.
|
[22] |
张超省, 王健, 张林, 等. 面向复杂障碍场的多智能体系统集群避障模型[J]. 兵工学报, 2021, 42(1):141-150.
|
|
ZHANG C S, WANG J, ZHANG L, et al. A multi-agent system flocking model with obstacle avoidance in complex obstacle field[J]. Acta Armamentarii, 2021, 42(1):141-150. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.01.016
|
[23] |
桑雷, 吕强. 基于人工势场法的多机器人编队与避障[J]. 信息系统工程, 2020(3):139-142,145.
|
|
SANG L, LÜ Q. Multi-robot formation and obstacle avoidance based on artificial potential field method[J]. Information Systems Engineering, 2020(3):139-142,145. (in Chinese)
|