欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

定点模式下装备维修决策与任务调度联合优化

梁晓龙1,齐小刚1,3*(),莫丽娜1,李家慧1,3,刘立芳2,3   

  1. (1. 西安电子科技大学 数学与统计学院, 陕西 西安 710071; 2. 西安电子科技大学 计算机科学与技术学院, 陕西 西安 710071; 3. 西安市信息网络优化与数学方法重点实验室, 陕西 西安 710071)
  • 收稿日期:2024-12-16 修回日期:2025-03-04
  • 通讯作者: *邮箱:xgqi@xidian.edu.cn
  • 基金资助:
    国家自然科学基金项目(62372354、62373291);航空科学基金项目(2024M066081001、2024Z071081003)

Equipment Maintenance Decision-making and Task Scheduling Joint Optimization Under Fixed-point Maintenance Mode

LIANG Xiaolong1, QI Xiaogang1,3*(), MO Lina1, LI Jiahui1,3, LIU Lifang2,3   

  1. (1. School of Mathematics and Statistics, Xidian University, Xi’an 710071, Shaanxi, China; 2. School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China;3. Xi'an Key Laboratory of Information Network Optimization and Mathematical Methods, Xi’an 710071, Shaanxi, China)
  • Received:2024-12-16 Revised:2025-03-04

摘要: 在复杂集中维修环境下,如何快速决策与任务调度流程整合、相关模型建立与求解,已经逐渐成为装备维修保障的迫切需求。综合定点维修模式下的装备维修具有维修模式众多、维修约束复杂、维修决策情况繁琐等问题,考虑多维修模式、时间冲突、备件数量、维修时间、优先级等因素,提出串换件决策,与选择性维修决策结合,将维修装备的二次使用时间与优先级结合作为维修收益,以有限时间下的维修收益、维修装备数量最大化作为目标,建立更完善的数学模型。针对上述问题设计相应的编码与解码方式,提出自适应混合粒子群遗传算法(Self-adaptive Hybrid Particle Swarm Optimization and Genetic Algorithm, SHPSO-GA),通过设计仿真实验与评价指标验证模型与算法合理性。实验结果表明,SHPSO-GA在10组案例中较其他算法Pareto最优解平均提升4.2%,算法收敛速度提高65.4%~83.7%,有效解决了定点模式下维修决策中时间、资源冲突问题,为战场环境下装备快速修复与任务调度提供了高鲁棒性解决方案。

关键词: 装备维修, 维修决策, 任务调度, 多目标优化

Abstract: In complex centralized maintenance environments, how to quickly integrate decision-making and task scheduling processes, establish and solve related models, has gradually become an urgent need for equipment maintenance support. Equipment maintenance under the comprehensive fixed-point maintenance mode has problems such as numerous maintenance modes, complex maintenance constraints, and cumbersome maintenance decision-making. Factors such as multiple maintenance modes, time conflicts, spare parts quantity, maintenance time, and priority should be considered. Propose the decision of serial replacement parts, combined with selective maintenance decision, and combine the secondary use time and priority of maintenance equipment as maintenance benefits. With the goal of maximizing maintenance benefits and the number of maintenance equipment under limited time, establish a more comprehensive mathematical model. Design corresponding encoding and decoding methods to address the above issues, and propose the self-adaptive hybrid particle swarm optimization and genetic algorithm (SHPSO-GA). Verify the rationality of the model and algorithm through simulation experiments and indicator evaluation. Experiments have shown that SHPSO-GA improves the average Pareto optimal solution by 4.2% compared to other algorithms in 10 cases, and increases the convergence speed by 65.4%-83.7%. It effectively solving the time and resource conflicts in maintenance decision-making under fixed-point mode, providing a highly robust solution for rapid equipment repair and task scheduling in battlefield environments.

Key words: equipment maintenance, maintenance decision, task scheduling, multi-objective optimization

中图分类号: