欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

聚脲/纤维复合结构的抗侵彻性能试验与数值仿真

龚晓慧1,饶国宁1*(),周如东2,朱晓丰2,孔德成2,孟辰宇1   

  1. (1. 南京理工大学 安全科学与工程学院, 江苏 南京210094; 2. 中海油常州涂料化工研究院有限公司, 江苏 常州 213000)
  • 收稿日期:2024-08-20 修回日期:2024-11-12
  • 通讯作者: *邮箱:njraoguoning@sina.com

Test and Numerical Simulation of Penetration Resistance of Polyurea/fiber Composite Structures

GONG Xiaohui1,RAO Guoning1*(),ZHOU Rudong2,ZHU Xiaofeng2,KONG Decheng2,MENG Chenyu1   

  1. (1. School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China; 2. CNOOC Changzhou Paint and Coatings Industry Research Institute, Changzhou 213000, Jiangsu, China)
  • Received:2024-08-20 Revised:2024-11-12

摘要: 为增强和测试材料结构的抗破片侵彻能力,采用聚脲、芳纶纤维和2024-T351铝合金材料,通过喷涂聚脲技术构建了聚脲/纤维铝合金复合防护结构,并对聚脲的力学性能进行测定与分析。通过结构抗破片侵彻试验和数值仿真,比较了不同涂覆厚度和方式下复合材料的防护性能,得出了不同防护结构的弹道极限速度,并分析了材料的破坏模式和机理,进而研究涂层厚度与防护效果之间的关系,确定了最佳涂覆厚度比例。研究结果表明:对于采用2 mm聚脲、2 mm芳纶纤维涂层的铝合金复合靶板,其局部损伤程度较小;与未涂覆的情况相比,该复合靶板的弹道极限速度提高了96 m/s,防护效果提升了36.64%;防护涂层厚度对弹道极限速度的提升效果有限。综合考虑面密度和材料强度等因素,数值仿真结果表明,对于4 mm铝合金板的抗破片侵彻结构,聚脲/纤维涂层的最佳厚度为4 ~6 mm,最佳厚度比例为聚脲与芳纶纤维的比例为6:4。

关键词: 聚脲, 芳纶纤维, 力学性能, 弹道极限值, 数值仿真

Abstract: In order to enhance and test the fragment penetration resistance of the material structure, the polyurea/fiber aluminum alloy composite protection structure was constructed by spraying polyurea technology with polyurea, aramid fiber and 2024-T351 aluminum alloy materials, and the mechanical properties of polyurea were measured and analyzed. By comparing the protection properties of composite materials under different coating thicknesses and methods, the ballistic limit velocity of different protection structures were obtained, and the failure modes and mechanisms of materials were analyzed. The relationship between coating thickness and protection effect was further studied, and the optimal coating thickness ratio was determined. The results show that the local damage degree of aluminum alloy composite plate coated with 2 mm polyurea /2 mm fiber is small. The ballistic limit velocity of the composite target plate is increased by 96 m/s and the protective effect is increased by 36.64% compared with the uncoated condition. The thickness of the protective coating has limited effect on the ballistic limit velocity. Considering the surface density and material strength, the numerical simulation results show that the optimal thickness of polyurea/fiber coating is 4 mm to 6 mm, and the optimal thickness ratio is 6:4 ratio of polyurea to aramid fiber for the fragmentation resistance of 4 mm aluminum alloy plate.

Key words: polyurea, aramid fiber, mechanical properties, ballistic limit, numerical simulation

中图分类号: