欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

面向无人平台建筑内导航的地图轻量化处理与楼梯区域分类方法

马雨薇1,武伟超1*,王伟2,牛爱林1,郭志明3,杨建新4   

  1. 1. 北京理工大学 机电学院 , 北京 100081; 2. 军事科学院 战略评估咨询中心 , 北京100091; 3. 中国兵器科学研究院 , 北京 100089; 4. 中国兵器工业信息中心, 北京 100089
  • 收稿日期:2024-06-19 修回日期:2025-03-26

Map Lightweight Processing and Staircase Area Classification Methods for Indoor Navigation of Unmanned Ground Platforms

MA Yuwei1, WU Weichao1 *, WANG Wei2, NIU Ailin1, GUO Zhiming3, YANG Jianxin4   

  1. 1. School of Mechatronics Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Strategic Assessments and Consultation Institute, Academy of Military Science, Beijing 100091, China;3. Ordnance Science and Research Academy of China, Beijing 100089, China; 4. Information Center of China North Industries Group Corporation, Beijing 100089, China
  • Received:2024-06-19 Revised:2025-03-26

摘要: 构建环境地图是导航的前提,完整详细的地图能够有效辅助无人平台规划最佳移动路径。为解决传统地图模型在地面无人平台建筑内导航应用中的数据冗余及难以区分地形结构的问题,提出一种面向无人平台建筑内导航的地图轻量化处理与楼梯区域分类方法。提取无人平台可行驶区域,减少数据冗余,并基于楼梯上表面的分布特性去除离群点。接着利用包含边缘平滑处理的地图构建算法,生成边界清晰、形状规整的多层栅格地图。随后提取楼梯环境特征,结合拉普拉斯平滑的朴素贝叶斯分类算法,区分并标记台阶和转弯平台等结构。实验结果表明,该方法生成的地图在保持高分辨率的同时,数据量较传统点云地图减少了一个数量级以上,且地图分类的宏精准率达到91.3%。相较于传统方法,该方法能构建更加轻量化且具有地形分类标签的建筑内多层栅格地图,为无人平台安全高效的导航提供支持。

关键词: 地图数据处理, 楼梯, 轻量化, 地图分类, 地面无人平台

Abstract: Constructing environment maps is a crucial prerequisite for navigation, as comprehensive and detailed maps effectively assist in planning optimal motion paths for unmanned ground platforms. To address the issues of data redundancy and the difficulty in distinguishing terrain structures in traditional map construction methods, a lightweight map processing and staircase area classification method for indoor navigation of unmanned ground platforms is proposed. The method first extracts the traversable area for unmanned platforms to reduce data redundancy and removes outliers based on the distribution characteristics of stair surfaces. Subsequently, a map construction algorithm incorporating edge smoothing is used to generate Multi-layer Grid Maps with clear boundaries, regular shapes, and distinct levels. Then, stair environment features are extracted, and a Naive Bayes classification algorithm with Laplace smoothing is employed to distinguish and label structures such as steps and turning platforms. The experimental results show that the maps generated by this method maintain high resolution while reducing the data volume by an order of magnitude compared to traditional point cloud maps, and the macro-precision rate of map classification reaches 91.3%. Compared with conventional methods, this approach can construct more lightweight multi-layer grid maps with terrain classification labels, providing safe and efficient navigation support for unmanned ground platforms.

Key words: map data processing, staircase, lightweight, map classification, unmanned ground platform

中图分类号: