[1] |
WORTHINGTON A M. On impact with a liquid surface[J]. Proceedings of the Royal Society of London, 1883, 34(220-223): 217-230.
|
[2] |
WORTHINGTON A M, COLE R S. V. Impact with a liquid surface, studied by the aid of instantaneous photography[J]. Philosophical Transactions of the Royal Society of London. Series A, 1897,189:137-148.
|
[3] |
MALLOCK H R A. Sounds produced by drops falling on water[J]. Proceedings of the Royal Society of London. Series A, 1918, 95(667):138-143.
|
[4] |
施红辉, 周浩磊, 吴岩, 等. 伴随超空泡产生的高速细长体入水实验研究[J]. 力学学报, 2012, 44(1):49-55.
doi: 10.6052/0459-1879-2012-1-lxxb2011-062
|
|
SHI H H, ZHOU H L, WU Y, et al. Experimental study on water entry of high-speed thin body with supercavitation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):49-55. (in Chinese)
|
[5] |
路丽睿, 魏英杰, 王聪, 等. 不同头型射弹低速倾斜入水空泡及弹道特性试验研究[J]. 兵工学报, 2018, 39(7):1364-1371.
doi: 10.3969/j.issn.1000-1093.2018.07.014
|
|
LU L R, WEI Y J, WANG C, et al. Experimental study on cavitation and ballistic characteristics of different head projectiles entering water at low speed[J]. Acta Armamentarii, 2018, 39(7):1364-1371. (in Chinese)
|
[6] |
李利剑, 张敏弟, 王占莹, 等. 入水角度对球体高速入水空泡特性影响研究[J]. 装备环境工程, 2023, 20(3):1-14.
|
|
LI L J, ZHANG M D, WANG Z Y, et al. Influence of water entry angle on cavitation characteristics of spheroid high speed water entry[J]. Equipment Environmental Engineering, 2023, 20(3):1-14. (in Chinese)
|
[7] |
侯宇, 黄振贵, 郭则庆. 超空泡射弹小入水角高速斜入水试验研究[J]. 兵工学报, 2020, 41(2):332-341.
doi: 10.3969/j.issn.1000-1093.2020.02.015
|
|
HOU Y, HUANG Z G, GUO Z Q, et al. Experimental study on high-speed oblique entry of supercavitation projectile with small entry angle[J]. Acta Armamentarii, 20, 41(2):332-341. (in Chinese)
|
[8] |
LIU L, WANG C, LI Q, et al. Numerical investigation of water-entry characteristics of high-speed parallel projectiles[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 450-465.
|
[9] |
LU L, GAO C S, QI X B, et al. Numerical study on the water-entry characteristics of asynchronous parallel projectiles at an oblique impact angle[J]. Ocean Engineering, 2023, 271: 113697.
|
[10] |
穆青, 熊天红, 王康健, 等. 不同密度回转体高速倾斜入水空化数值模拟[J]. 兵工学报, 2020, 41(增刊1):116-121.
|
|
MU Q, XIONG T H, WANG K J, et al. Numerical simulation of water cavitation of rotors with different density inclined at high speed[J]. Acta Armamentarii, 2019, 41(S1):116-121. (in Chinese)
|
[11] |
胡明勇, 张硕, 孟庆昌, 等. 射弹斜入水时流体动力特性及弹体水动力冲击载荷研究[J]. 海军工程大学学报, 2021, 33(4):7-12.
|
|
HU M Y, ZHANG S, MENG Q C, et al. Study on hydrodynamic characteristics and hydrodynamic impact load of projectile body during oblique entry into water[J]. Journal of Naval University of Engineering, 2021, 33(4):7-12. (in Chinese)
|
[12] |
汪春辉, 王嘉安, 王超, 等. 基于S-ALE方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110-3123.
|
|
WANG C H, WANG J A, WANG C, et al. Research on ice breaking with vertical water of cylinder based on S-ALE method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. (in Chinese)
|
[13] |
张军, 蔡晓伟, 宣建明, 等. 弹体穿越冰水混合物流动过程的数值模拟[J]. 弹道学报, 2020, 32(3):35-40.
doi: 10.12115/j.issn.1004-499X(2020)03-008
|
|
ZHANG J, CAI X W, XUAN J M, et al. Numerical simulation of missile flow through ice-water mixture[J]. Journal of Ballistics, 2019, 32(3):35-40. (in Chinese)
|
[14] |
YOU C, SUN T Z, ZHANG G Y, et al. Numerical study on effect of brash ice on water exit dynamics of ventilated cavitation cylinder[J]. Ocean Engineering, 2022, 245: 110443.
|
[15] |
张健宇. 航行体冰环境约束出水空泡演化及载荷特性研究[D]. 大连: 大连理工大学, 2021.
|
|
ZHANG J Y. Study on evolution and load characteristics of effluent cavitation constrained by ice environment of navigation body[D]. Dalian: Dalian University of Technology, 2021. (in Chinese)
|
[16] |
蔡晓伟, 宣建明, 王宝寿, 等. 细长体穿越冰-水混合物的出水流场数值模拟[J]. 兵工学报, 2020, 41(增刊1):79-90.
|
|
CAI X W, XUAN J M, WANG B S, et al. Numerical simulation of flow field of thin body through ice-water mixture[J]. Acta Armamentarii, 2020, 41(S1):79-90. (in Chinese)
|
[17] |
HU X Y, WEI Y J, WANG C. Hydrodynamics of the projectile entering the water under the ice hole constraint environment[J]. Physics of Fluids, 2023, 35(4): 043305.
|
[18] |
WANG H, HUANG Z G, HUANG D, et al. Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds[J]. Ocean Engineering, 2022, 265: 112548.
|
[19] |
TANG E L, ZHANG Z, CHEN C, et al. Dynamic response of slender body passing through ice and water mixture at high velocity[J]. Journal of Mechanics, 2022, 38: 257-266.
|
[20] |
LOGVINOVICH G V. Hydrodynamics of free-boundary flows[R]. Jersualem: IPST Press,1972.
|