Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (6): 240380-.doi: 10.12382/bgxb.2024.0380
Previous Articles Next Articles
DONG Yi1, KONG Xiaofang1,*(), LUO Hong’e1,**(
), WAN Gang1, XIA Yan1, WAN Minjie2,3
Online:
2025-06-28
Contact:
KONG Xiaofang, LUO Hong’e
CLC Number:
DONG Yi, KONG Xiaofang, LUO Hong’e, WAN Gang, XIA Yan, WAN Minjie. Lightweight Transmedia High-speed Small Target Detection Method Based on Coordinate Attention Mechanism[J]. Acta Armamentarii, 2025, 46(6): 240380-.
Add to citation manager EndNote|Ris|BibTeX
工况编号 | 发射压力/MPa | 波长/m | 波陡/% | 发射角度/(°) |
---|---|---|---|---|
1 | 4.0 | 30 | ||
2 | 4.0 | 1.9 | 3.0 | 30 |
3 | 4.0 | 1.9 | 4.5 | 30 |
4 | 4.0 | 1.9 | 6.0 | 30 |
5 | 4.5 | 30 | ||
6 | 4.5 | 1.9 | 3.0 | 30 |
7 | 4.5 | 1.9 | 4.5 | 30 |
8 | 4.5 | 1.9 | 6.0 | 30 |
9 | 5.0 | 30 | ||
10 | 5.0 | 1.9 | 3.0 | 30 |
11 | 5.0 | 1.9 | 4.5 | 30 |
12 | 5.0 | 1.9 | 6.0 | 30 |
Table 1 Working conditions
工况编号 | 发射压力/MPa | 波长/m | 波陡/% | 发射角度/(°) |
---|---|---|---|---|
1 | 4.0 | 30 | ||
2 | 4.0 | 1.9 | 3.0 | 30 |
3 | 4.0 | 1.9 | 4.5 | 30 |
4 | 4.0 | 1.9 | 6.0 | 30 |
5 | 4.5 | 30 | ||
6 | 4.5 | 1.9 | 3.0 | 30 |
7 | 4.5 | 1.9 | 4.5 | 30 |
8 | 4.5 | 1.9 | 6.0 | 30 |
9 | 5.0 | 30 | ||
10 | 5.0 | 1.9 | 3.0 | 30 |
11 | 5.0 | 1.9 | 4.5 | 30 |
12 | 5.0 | 1.9 | 6.0 | 30 |
参数 | 数值 |
---|---|
传感器分辨率 | 1280×960 |
位深度/位 | 12 |
像素大小/μm | 20 |
传感器尺寸/mm | 25.6×16 |
帧频/(帧·s-1) | 4000 |
曝光时间/μs | 20 |
Table 2 Main parameters of VEO 640L high-speed camera
参数 | 数值 |
---|---|
传感器分辨率 | 1280×960 |
位深度/位 | 12 |
像素大小/μm | 20 |
传感器尺寸/mm | 25.6×16 |
帧频/(帧·s-1) | 4000 |
曝光时间/μs | 20 |
实验设备 | 配置参数 |
---|---|
操作系统 | Windows10 |
中央处理器CPU | 12th Gen Intel(R) Core(TM) i7-12700 2.10GHz |
图形处理器GPU | NVIDIA GeForce RTX 4070Ti |
显存 | 12GB |
深度学习框架 | Pytorch |
编程语言 | Python 3.9 |
GPU加速器 | CUDA 12.1 |
Table 3 Hardware and software configuration
实验设备 | 配置参数 |
---|---|
操作系统 | Windows10 |
中央处理器CPU | 12th Gen Intel(R) Core(TM) i7-12700 2.10GHz |
图形处理器GPU | NVIDIA GeForce RTX 4070Ti |
显存 | 12GB |
深度学习框架 | Pytorch |
编程语言 | Python 3.9 |
GPU加速器 | CUDA 12.1 |
工况及平均 置信度 | 发射压力/MPa | 波陡/% | 发射角度/(°) | 检测置信度 | ||
---|---|---|---|---|---|---|
射弹在空气中 | 射弹入水瞬间 | 射弹在水中 | ||||
工况1 | 4.0 | 3.0 | 30 | 0.85 | 0.83 | 0.91 |
工况2 | 4.0 | 4.5 | 30 | 0.88 | 0.79 | 0.94 |
工况3 | 4.0 | 6.0 | 30 | 0.93 | 0.86 | 0.95 |
工况4 | 4.5 | 3.0 | 30 | 0.94 | 0.56 | 0.94 |
工况5 | 4.5 | 4.5 | 30 | 0.88 | 0.89 | 0.94 |
工况6 | 4.5 | 6.0 | 30 | 0.96 | 0.80 | 0.94 |
平均置信度 | 0.91 | 0.79 | 0.94 |
Table 4 Projectile identification confidence levels
工况及平均 置信度 | 发射压力/MPa | 波陡/% | 发射角度/(°) | 检测置信度 | ||
---|---|---|---|---|---|---|
射弹在空气中 | 射弹入水瞬间 | 射弹在水中 | ||||
工况1 | 4.0 | 3.0 | 30 | 0.85 | 0.83 | 0.91 |
工况2 | 4.0 | 4.5 | 30 | 0.88 | 0.79 | 0.94 |
工况3 | 4.0 | 6.0 | 30 | 0.93 | 0.86 | 0.95 |
工况4 | 4.5 | 3.0 | 30 | 0.94 | 0.56 | 0.94 |
工况5 | 4.5 | 4.5 | 30 | 0.88 | 0.89 | 0.94 |
工况6 | 4.5 | 6.0 | 30 | 0.96 | 0.80 | 0.94 |
平均置信度 | 0.91 | 0.79 | 0.94 |
网络模型 | mAP0.5/ % | 参数量/ 百万 | FLOPS/ Giga | 帧频/ Hz |
---|---|---|---|---|
Faster R-CNN(ResNet) | 97.12 | 41.36 | 269.00 | 14.36 |
Faster R-CNN(MobileNet) | 86.74 | 82.36 | 137.48 | 21.36 |
YOLOv3SPP | 94.18 | 62.58 | 117.12 | 41.73 |
YOLOv7 | 95.43 | 37.62 | 106.47 | 73.88 |
Table 5 Values of evaluation indicators for different models
网络模型 | mAP0.5/ % | 参数量/ 百万 | FLOPS/ Giga | 帧频/ Hz |
---|---|---|---|---|
Faster R-CNN(ResNet) | 97.12 | 41.36 | 269.00 | 14.36 |
Faster R-CNN(MobileNet) | 86.74 | 82.36 | 137.48 | 21.36 |
YOLOv3SPP | 94.18 | 62.58 | 117.12 | 41.73 |
YOLOv7 | 95.43 | 37.62 | 106.47 | 73.88 |
图像数据增强方法 | P/% | R/% | mAP0.5/% |
---|---|---|---|
原始数据 | 81.4 | 85.37 | 92.83 |
图像扩充 | 90.87 | 81.39 | 94.33 |
图像扩充+CLAHE | 91.89 | 82.93 | 95.43 |
Table 6 Effect of data enhancement on generalization ability
图像数据增强方法 | P/% | R/% | mAP0.5/% |
---|---|---|---|
原始数据 | 81.4 | 85.37 | 92.83 |
图像扩充 | 90.87 | 81.39 | 94.33 |
图像扩充+CLAHE | 91.89 | 82.93 | 95.43 |
网络模型 | CA | DSC | Params/ M | FLOPS/ G | mAP0.5/ % | P/ % | R/ % |
---|---|---|---|---|---|---|---|
YOLOv7 | 37.62 | 106.47 | 95.43 | 91.89 | 82.93 | ||
√ | 30.15 | 97.77 | 93.00 | 87.50 | 85.37 | ||
√ | √ | 30.41 | 97.79 | 95.52 | 94.87 | 90.24 |
Table 7 Effects of different improvement methods on model performance
网络模型 | CA | DSC | Params/ M | FLOPS/ G | mAP0.5/ % | P/ % | R/ % |
---|---|---|---|---|---|---|---|
YOLOv7 | 37.62 | 106.47 | 95.43 | 91.89 | 82.93 | ||
√ | 30.15 | 97.77 | 93.00 | 87.50 | 85.37 | ||
√ | √ | 30.41 | 97.79 | 95.52 | 94.87 | 90.24 |
[1] |
|
[2] |
孙嘉伟, 弯港, 顾金良, 等. 基于线阵相机的水下射弹动态参数及超空泡演化过程测量方法研究[J]. 兵工学报, 2024, 45(8):2564-2572.
|
|
|
[3] |
侯宇, 黄振贵, 郭则庆, 等. 超空泡射弹小入水角高速斜入水试验研究[J]. 兵工学报, 2020, 41(2):332-341.
|
|
|
[4] |
祁晓斌, 施瑶, 刘喜燕, 等. 阶梯式圆柱射弹小角度入水弹道特性研究[J]. 力学学报, 2023, 55(11):2468-2479.
|
|
|
[5] |
路丽睿, 魏英杰, 王聪, 等. 不同头型射弹低速倾斜入水空泡及弹道特性试验研究[J]. 兵工学报, 2018, 39(7):1364-1371.
|
|
|
[6] |
|
[7] |
|
[8] |
张侠. 基于深度学习的高速目标检测与跟踪研究[D]. 西安: 西安工业大学, 2022.
|
|
|
[9] |
谢富, 朱定局. 深度学习目标检测方法综述[J]. 计算机系统应用, 2022, 31(2):1-12
|
|
|
[10] |
|
[11] |
杜芸彦, 杨锦辉, 李鸿, 等. 基于改进Faster RCNN的少样本目标检测算法[J]. 电光与控制, 2023, 30(5):44-51.
|
|
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
张旭, 陈慈发, 董方敏. 基于改进YOLOv7的PCB缺陷检测算法[J]. 计算机工程, 2024, 50(12):318-328.
|
|
|
[17] |
|
[18] |
唐云祁, 李同, 丁建伟, 等. 弹种自动识别算法研究与实现[J]. 中国人民公安大学学报(自然科学版), 2016, 22(1):24-26.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[22] |
杨环宇, 王军, 吴祥, 等. 一种坐标通道注意力深度学习网络的军用飞机识别方法[J]. 兵工学报, 2024, 45(7):2128-2143.
|
|
[1] | GUI Fan, SHI Zhangsong, SUN Shiyan, YING Wenjian, HU Weiqiang, XU Huihui, WU Zhonghong, HU Qingping, ZHANG Jun. Detection and Tracking of Water Columns at Marine Impact Points Based on Dynamic Features [J]. Acta Armamentarii, 2025, 46(5): 240918-. |
[2] | LI Yangjun, HUANG Qilong, YANG Li, CHEN Xu. Combat Intention Recognition of Air Cluster Targets Driven by Data and Knowledge [J]. Acta Armamentarii, 2025, 46(2): 240113-. |
[3] | CUI Suxiao, WU Zhe, CUI Yanping, ZHANG Qiang, ZHAO Yuejing. Fault Diagnosis of Planetary Gearbox Based on Frequency Slice Wavelet Transform and Attention-enhanced ConvNeXt Model [J]. Acta Armamentarii, 2025, 46(2): 240329-. |
[4] | FENG Yingbin, GUO Xiaozun, YAN Jiahua. Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism [J]. Acta Armamentarii, 2025, 46(1): 231124-. |
[5] | YAO Yu, SONG Chunlin, SHAO Jiangqi. Real-time Detection and Localization Algorithm for Military Vehicles in Drone Aerial Photography [J]. Acta Armamentarii, 2024, 45(S1): 354-360. |
[6] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. |
[7] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
[8] | YANG Huanyu, WANG Jun, WU Xiang, BO Yuming, MA Lifeng, LU Jinlei. A Method for Military Aircraft Recognition Using a Coordinate Attention-based Deep Learning Network [J]. Acta Armamentarii, 2024, 45(7): 2128-2143. |
[9] | CHANG Tianqing, ZHANG Jie, ZHAO Liyang, HAN Bin, ZHANG Lei. Research on Armored Vehicle Detection Algorithm Based on Visible and Infrared Image Fusion [J]. Acta Armamentarii, 2024, 45(7): 2085-2096. |
[10] | LIU Peng, XIONG Zeyu, JING Wenbo, FENG Xuan, ZHANG Junhao, LIU Tongbo, WU Xueni, XIA Xuan, WAN Linlin, ZHAO Haili. Degrad Target Detection Algorithm [J]. Acta Armamentarii, 2024, 45(6): 2065-2075. |
[11] | WU Lingxiao, KANG Jiayin, JI Yunxiang, MA Hanyan. Infrared and Visible Image Fusion Using Dual-stream Generative Adversarial Network with Multiple Discriminators [J]. Acta Armamentarii, 2024, 45(6): 1799-1812. |
[12] | LIANG Guolong, LUO Junge, HAO Yu, FU Jin. An Array Extension Method Based on Combination of Sub-array Covariance Matrices [J]. Acta Armamentarii, 2024, 45(5): 1717-1724. |
[13] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
[14] | LIN Sen, WANG Jingang, GAO Hongwei. Battlefield Image Dehazing Based on Global Compensation Attention Mechanism [J]. Acta Armamentarii, 2024, 45(4): 1344-1353. |
[15] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||