Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (1): 247-259.doi: 10.12382/bgxb.2022.0823
Special Issue: 特种车辆理论与技术
Previous Articles Next Articles
JIANG Yi1,2,3, WANG Ting1,2,*(), SHAO Peiyao4, XU Yao5, SHAO Shiliang1,2
Received:
2022-09-14
Online:
2023-02-10
Contact:
WANG Ting
CLC Number:
JIANG Yi, WANG Ting, SHAO Peiyao, XU Yao, SHAO Shiliang. Gait Study and Obstacle-Surmounting Performance Analysis of a Wheel-Leg Hybrid Robot[J]. Acta Armamentarii, 2023, 44(1): 247-259.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
长度/mm | 696 |
宽度/mm | 370 |
轴距/mm | 350 |
轮距/mm | 340 |
轮腿长度/mm | 173 |
弹簧刚度系数/(N·m-1) | 2500 |
弹簧阻尼系数(N·s·m-1) | 800 |
Table 1 Parameters of the six-spoke wheel-leg robot
参数 | 数值 |
---|---|
长度/mm | 696 |
宽度/mm | 370 |
轴距/mm | 350 |
轮距/mm | 340 |
轮腿长度/mm | 173 |
弹簧刚度系数/(N·m-1) | 2500 |
弹簧阻尼系数(N·s·m-1) | 800 |
步态 | 轮腿关系 |
---|---|
对角 | 对角线上轮腿相位一致,同轴轮腿有相位差 |
同侧 | 同侧轮腿相位一致,同轴轮腿有相位差 |
前后 | 同轴轮腿相位一致,同侧轮腿有相位差 |
滚动 | 四轮腿相位一致 |
Table 2 Gait characteristics of the robot
步态 | 轮腿关系 |
---|---|
对角 | 对角线上轮腿相位一致,同轴轮腿有相位差 |
同侧 | 同侧轮腿相位一致,同轴轮腿有相位差 |
前后 | 同轴轮腿相位一致,同侧轮腿有相位差 |
滚动 | 四轮腿相位一致 |
台阶高度/mm | 台阶宽度/mm | 通过性 |
---|---|---|
175 | 260 | 通过 |
175 | 300 | 通过 |
175 | 350 | 通过 |
150 | 260 | 通过 |
150 | 300 | 通过 |
150 | 350 | 通过 |
125 | 260 | 通过 |
125 | 300 | 通过 |
125 | 350 | 通过 |
Table 3 Stairs experiment results
台阶高度/mm | 台阶宽度/mm | 通过性 |
---|---|---|
175 | 260 | 通过 |
175 | 300 | 通过 |
175 | 350 | 通过 |
150 | 260 | 通过 |
150 | 300 | 通过 |
150 | 350 | 通过 |
125 | 260 | 通过 |
125 | 300 | 通过 |
125 | 350 | 通过 |
[1] |
王鸿鹏, 杨云, 刘景泰. 高速移动机器人的研究现状与发展趋势[J]. 自动化与仪表, 2011, 26(12): 1-4.
|
|
|
[2] |
doi: 10.1007/s00542-017-3424-7 URL |
[3] |
|
[4] |
王琪, 张秀丽, 江磊, 等. 具有2DOF铰接式躯干的仿猎豹四足奔跑机器人[J]. 机器人, 2022, 44(3): 257-266.
doi: 10.13973/j.cnki.robot.210101 |
doi: 10.13973/j.cnki.robot.210101 |
|
[5] |
郭非, 汪首坤, 王军政. 轮足复合移动机器人运动规划发展现状及关键技术分析[J]. 控制与决策, 2022, 37(6): 1433-1444.
|
|
|
[6] |
|
[7] |
|
[8] |
|
[9] |
曲梦可, 王洪波, 荣誉. 军用轮、 腿混合四足机器人设计[J]. 兵工学报, 2018, 39(4): 787-797.
doi: 10.3969/j.issn.1000-1093.2018.04.019 |
|
|
[10] |
|
[11] |
田润, 宋轶民, 孙涛, 等. 一种新型轮腿式移动机器人的参数设计与实验研究[J]. 机器人, 2015, 37(5): 538-545.
doi: 10.13973/j.cnki.robot.2015.0538 |
doi: 10.13973/j.cnki.robot.2015.0538 |
|
[12] |
|
[13] |
|
[14] |
杨帆, 吴贺利, 罗晨晖. 一种轮腿式越障机器人的设计与分析[J]. 机械传动, 2017, 41(5): 198-203.
|
|
|
[15] |
|
[16] |
doi: 10.1109/TRO.2014.2365651 URL |
[17] |
王银浩, 颉潭成, 徐彦伟, 等. 四足机器人侧摆型trot步态的运动学分析及仿真研究[J]. 现代制造工程, 2022(5): 24-29.
|
|
|
[18] |
孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报:工学版, 2015, 45(3): 28-34.
|
|
|
[19] |
李姗姗, 王洪波, 陈建宇, 等. 新型四足并联军用机器人步态控制算法及仿真研究[J]. 兵工学报, doi: 10.12382/bgxb.2021.0796.
doi: 10.12382/bgxb.2021.0796 |
doi: 10.12382/bgxb.2021.0796 |
|
[20] |
芮宏斌, 李路路, 曹伟, 等. 轮-履-腿复合仿生机器人步态规划及越障性能分析[J]. 工程设计学报, 2022, 29(2): 133-142.
|
|
|
[21] |
张楠, 姜文通, 牛宝山, 等. 轮腿式自动引导小车结构设计与行走步态规划[J]. 机械科学与技术, 2021, 40(2): 211-217.
|
|
[1] | ZHANG Xuexue, XUE Zhihua, NIE Hongqi, YAN Qilong. Preparation of Energetic Burning Rate Inhibitor and Its Negative Catalytic Effect on AP Decomposition [J]. Acta Armamentarii, 2024, 45(1): 15-25. |
[2] | CHEN Baihan, SHEN Zikai, ZOU Huihui, WANG Weiguang, WANG Kehui. Basic Evolution Characteristics of Oblique Penetration of Projectile against Hard Target [J]. Acta Armamentarii, 2023, 44(S1): 59-66. |
[3] | CHEN Baihan, WANG Libin, ZOU Huihui, WANG Weiguang, WANG Kehui. Influence of Spin on the Penetration Effect of Projectile [J]. Acta Armamentarii, 2023, 44(S1): 117-124. |
[4] | LI Dongyang, CHANG Sijiang, WANG Zhongyuan. Nonlinear Region of Attraction Estimation for Projectile’s Angular Motion [J]. Acta Armamentarii, 2023, 44(8): 2329-2341. |
[5] | DU Wanshan, ZHOU Zhou, BAI Yu, ZHANG Zhilin, WANG Keilei. Study on Multibody Dynamics Modeling and Flight Dynamic Characteristics of Combined Aircraft [J]. Acta Armamentarii, 2023, 44(8): 2245-2262. |
[6] | ZHOU Lin, NI Lei, LI Dongwei, ZHANG Xiangrong, LIU Haiqing, JIANG Tao, ZHU Yingzhong. Test Method for Anti-overload Performance of Explosives [J]. Acta Armamentarii, 2023, 44(6): 1722-1732. |
[7] | SONG Jinchao, ZHAO Liangyu. Attitude Pursuit GuidanceLaw for Coning Motion Stability of Spinning Missiles [J]. Acta Armamentarii, 2023, 44(6): 1795-1808. |
[8] | XI Xuechen, YANG Pengfei, WANG Kuanliang. Oscillations Characteristics of One-dimensional Detonation Waves in Non-Uniform Hydrogen-Air Mixture [J]. Acta Armamentarii, 2023, 44(4): 982-993. |
[9] | ZHAO Huanjuan, LIU Keqing, PANG Lei, LIU Jing, LIN Min, DONG Shiming. Effect of Detonation Instability and Initial Pressure on Track Angle of Spinning Detonation [J]. Acta Armamentarii, 2023, 44(4): 1086-1096. |
[10] | ZHANG Ning, LIN Haihua, SUN Yaping, LI Zongji, WANG Shizhe. Analysis of Petri Net Model and Index Demonstration for Torpedo Equipment Testing and Maintenance [J]. Acta Armamentarii, 2023, 44(3): 886-894. |
[11] | SHANG Zhe, WANG Ting, XU Yao, WU Yingbiao, SHAO Peiyao, SHAO Shiliang. Structural Design and Obstacle-surmounting Dynamics Research of Six-wheeled Rocker-type Mobile Robot [J]. Acta Armamentarii, 2023, 44(11): 3478-3488. |
[12] | YUAN Shusen, DENG Wenxiang, YAO Jianyong, YANG Guolai. Adaptive Integral Robust Control for the Bidirectional Stability System of All-electric Tanks [J]. Acta Armamentarii, 2023, 44(1): 140-155. |
[13] | XU Haoxuan, MA Xiaojun, LIU Chunguang. Large-Signal Stability of On-board DC Microgrids for Hybrid Electric Armored Vehicles [J]. Acta Armamentarii, 2023, 44(1): 108-116. |
[14] | LIU Lin, GONG Chen, LI Mengmeng, WANG Ran. RMSST Design Based on Virtual Reality [J]. Acta Armamentarii, 2022, 43(S1): 208-213. |
[15] | YU Haomiao, LIU Chengwei, GUO Chen, JIA Zhaoyan. Finite-time Path-following Controller for UUV Based on PSO-NTSMC [J]. Acta Armamentarii, 2022, 43(8): 1939-1946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||