Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (8): 2453-2464.doi: 10.12382/bgxb.2022.0300
Previous Articles Next Articles
ZHOU Yu1, CAO Ronggang1,2,3,*(), LI Ping1,3, MA Xiao1
Received:
2022-04-24
Online:
2023-08-30
Contact:
CAO Ronggang
CLC Number:
ZHOU Yu, CAO Ronggang, LI Ping, MA Xiao. A Fuze Burst Point Detection Method for Outfield Test Images[J]. Acta Armamentarii, 2023, 44(8): 2453-2464.
Add to citation manager EndNote|Ris|BibTeX
目标类别 | 目标总数 | 面积占比/% | |||
---|---|---|---|---|---|
最大值 | 最小值 | 中位数 | 均值 | ||
1 | 2578 | 11.04 | 0.10 | 1.91 | 2.18 |
2 | 2180 | 6.94 | 1.27 | 3.19 | 3.59 |
3 | 2020 | 10.87 | 2.14 | 5.19 | 5.39 |
Table 1 Information statistics of the annotated ground truth box of dataset target
目标类别 | 目标总数 | 面积占比/% | |||
---|---|---|---|---|---|
最大值 | 最小值 | 中位数 | 均值 | ||
1 | 2578 | 11.04 | 0.10 | 1.91 | 2.18 |
2 | 2180 | 6.94 | 1.27 | 3.19 | 3.59 |
3 | 2020 | 10.87 | 2.14 | 5.19 | 5.39 |
实验组 | 骨干网络 | 检测头 | 准确 率/% | 召回 率/% | 平均精 度/% | F1分 数/% |
---|---|---|---|---|---|---|
模型1 | DarkNet53 | 多检测头 | 74.6 | 55.0 | 74.7 | 59.8 |
模型2 | ConvNeXt | 单检测头 | 87.8 | 56.5 | 76.9 | 55.6 |
模型3 | ConvNeXt | 多检测头 | 85.0 | 57.2 | 79.8 | 65.7 |
Table 2 Effects of improved designs of backbone and head on detection model performance
实验组 | 骨干网络 | 检测头 | 准确 率/% | 召回 率/% | 平均精 度/% | F1分 数/% |
---|---|---|---|---|---|---|
模型1 | DarkNet53 | 多检测头 | 74.6 | 55.0 | 74.7 | 59.8 |
模型2 | ConvNeXt | 单检测头 | 87.8 | 56.5 | 76.9 | 55.6 |
模型3 | ConvNeXt | 多检测头 | 85.0 | 57.2 | 79.8 | 65.7 |
实验组 | DCSP 模块 | MBCA 模块 | 准确 率/% | 召回率/ % | 平均精 度/% | F1分 数/% |
---|---|---|---|---|---|---|
模型3 | 85.0 | 57.2 | 79.8 | 65.7 | ||
模型4 | √ | 84.2 | 85.1 | 88.6 | 84.5 | |
模型5 | √ | 89.3 | 84.6 | 90.7 | 86.8 | |
模型6 | √ | √ | 87.3 | 87.8 | 92.7 | 87.4 |
Table 3 Effects of improvement measures of neck on detection model performance
实验组 | DCSP 模块 | MBCA 模块 | 准确 率/% | 召回率/ % | 平均精 度/% | F1分 数/% |
---|---|---|---|---|---|---|
模型3 | 85.0 | 57.2 | 79.8 | 65.7 | ||
模型4 | √ | 84.2 | 85.1 | 88.6 | 84.5 | |
模型5 | √ | 89.3 | 84.6 | 90.7 | 86.8 | |
模型6 | √ | √ | 87.3 | 87.8 | 92.7 | 87.4 |
检测模型 | 准确率/% | 召回率/% | 平均精度/% | F1分数/% |
---|---|---|---|---|
Faster RCNN 模型 | 63.2 | 85.4 | 81.3 | 70.2 |
SSD模型 | 78.4 | 62.3 | 74.5 | 61.4 |
YOLOv3模型 | 80.5 | 59.4 | 76.1 | 64.8 |
YOLOX模型 | 87.9 | 74.1 | 87.5 | 81.1 |
本文模型 | 87.3 | 87.8 | 92.7 | 87.4 |
Table 5 Performance comparison of different detection models based on the proposed dataset
检测模型 | 准确率/% | 召回率/% | 平均精度/% | F1分数/% |
---|---|---|---|---|
Faster RCNN 模型 | 63.2 | 85.4 | 81.3 | 70.2 |
SSD模型 | 78.4 | 62.3 | 74.5 | 61.4 |
YOLOv3模型 | 80.5 | 59.4 | 76.1 | 64.8 |
YOLOX模型 | 87.9 | 74.1 | 87.5 | 81.1 |
本文模型 | 87.3 | 87.8 | 92.7 | 87.4 |
[1] |
周慧. 靶场光电经纬仪最优布站方法研究[J]. 测控技术, 2018, 37(3):142-144,149.
|
|
|
[2] |
董明荣, 许学忠, 张彤, 等. 空中炸点三基阵声学定位技术研究[J]. 兵工学报, 2010, 31(3):343-349.
|
|
|
[3] |
吕韶昱, 刘蔚, 孟庆慈. 差分GPS技术在靶场弹道测量中的应用研究[J]. 测控技术, 2003, 22(7):57-61.
|
|
|
[4] |
李翰山, 雷志勇, 王泽民, 等. 一种新型天幕交汇立靶精度测量系统[J]. 电光与控制, 2007, 14(5):153-155,159.
|
|
|
[5] |
李翰山, 雷志勇, 王泽民, 等. 多光幕法测量高空弹丸炸点坐标原理与分析[J]. 仪器仪表学报, 2009, 30(3):621-624.
|
|
|
[6] |
李静, 雷志勇, 王泽民, 等. 近炸引信对空炸点位置测试方法研究[J]. 计算机测量与控制, 2011, 19(7):1602-1604.
|
|
|
[7] |
秦晓燕, 袁广林. 基于主分量寻踪与分析的炮弹炸点检测[J]. 兵工学报, 2013, 34(10):1266-1272.
doi: 10. 3969/ j. issn. 1000-1093. 2013. 10. 011 |
|
|
[8] |
张冠武, 连豪, 谢敏. 战场侦察雷达对炸点目标的识别方法[J]. 雷达科学与技术, 2012, 10(4):396-399.
|
|
|
[9] |
doi: 10.1109/TPAMI.2016.2577031 URL |
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
doi: S0893-6080(17)30297-6 pmid: 29395652 |
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[1] | ZHAO Xiaoqiang, CHENG Wei. Lightweight Image Super-resolution Reconstruction Based on Cross-fusion of Spatial Features [J]. Acta Armamentarii, 2024, 45(4): 1273-1284. |
[2] | WANG Yongzhen, TONG Ming, YAN Xuefeng, WEI Mingqiang. Transformer-CNN-based Multi-feature Aggregation Algorithm for Real Battlefield Image Dehazing [J]. Acta Armamentarii, 2024, 45(4): 1070-1081. |
[3] | SONG Xiaoru, LIU Kang, GAO Song, CHEN Chaobo, YAN Kun. Research on Improved YOLOv5-based Military Target Recognition Algorithm Used in Complex Battlefield Environment [J]. Acta Armamentarii, 2024, 45(3): 934-947. |
[4] | LIU Wangsheng, PAN Haipeng, WANG Minghuan. Composite Model Particle Filter for Indoor Sound Source Location Based on Multi-feature [J]. Acta Armamentarii, 2024, 45(3): 975-985. |
[5] | LIU Mengzhen, HUANG Guangyan, ZHANG Hong, ZHOU Hongyuan, LIU Siyu. Protective Material Crease Detection with Small Sample-driven Feature Segmented Neural Network [J]. Acta Armamentarii, 2024, 45(3): 963-974. |
[6] | WANG Xu, LI Rui, HUANG Ying, SHEN Jiwei, SHANG Xianhe. Construction of Driving Cycle for Military Tracked Vehicles Considering Road Features [J]. Acta Armamentarii, 2024, 45(3): 907-915. |
[7] | TIAN Daming, MIAO Pu. Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning [J]. Acta Armamentarii, 2024, 45(2): 466-473. |
[8] | ZHANG Kun, DU Ruiyi, SHI Haotian, HUA Shuai. Prediction of Aircraft Trajectory Based on Mogrifier-BiGRU [J]. Acta Armamentarii, 2024, 45(2): 373-384. |
[9] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
[10] | QIN Haolin, XU Tingfa, LI Jianan. Semi-supervised Hyperspectral Salient Object Detection Using Superpixel Attention and Siamese Structure [J]. Acta Armamentarii, 2023, 44(9): 2639-2649. |
[11] | HUI Kanghua, YANG Wei, LIU Haohan, ZHANG Zhi, ZHENG Jin, BAI Xiao. Enhanced Multi-scale Target Detection Method Based on YOLOv5 [J]. Acta Armamentarii, 2023, 44(9): 2600-2610. |
[12] | PENG Peiran, REN Shubo, LI Jianan, ZHOU Hongwei, XU Tingfa. Illumination-aware Multispectral Fusion Network for Pedestrian Detection [J]. Acta Armamentarii, 2023, 44(9): 2622-2630. |
[13] | LIU Bing, HAO Xinhong, ZHOU Wen, YANG Jin. Recognition Method of Target and Sweep Jamming Signal for FM Radio Fuze Based on BAS-BPNN [J]. Acta Armamentarii, 2023, 44(8): 2391-2403. |
[14] | WU Liyang, GUO Pengcheng, LIU Chao, LI Wenqiang. Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks [J]. Acta Armamentarii, 2023, 44(8): 2310-2318. |
[15] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||