Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (8): 240643-.doi: 10.12382/bgxb.2024.0643
Previous Articles Next Articles
LIU Gangwei1,2, ZHANG Jingyuan3, SHI Zhangsong1,*(), TAN Bo1, SONG Pu2, HU Hongwei2, LU Yongjin1
Received:
2024-07-29
Online:
2025-08-28
Contact:
SHI Zhangsong
CLC Number:
LIU Gangwei, ZHANG Jingyuan, SHI Zhangsong, TAN Bo, SONG Pu, HU Hongwei, LU Yongjin. Effect of Shock Wave Load in Underwater Explosion of Cased Charge near Seabed[J]. Acta Armamentarii, 2025, 46(8): 240643-.
Add to citation manager EndNote|Ris|BibTeX
ρ0/ (kg·m-3) | A1/ MPa | A2/ MPa | A3/ MPa | B0 | B1 | T1/ MPa | T2/ MPa |
---|---|---|---|---|---|---|---|
1000 | 2200 | 9540 | 14600 | 0.28 | 0.28 | 2200 | 0 |
Table 1 Parameters of the water polynomial equation
ρ0/ (kg·m-3) | A1/ MPa | A2/ MPa | A3/ MPa | B0 | B1 | T1/ MPa | T2/ MPa |
---|---|---|---|---|---|---|---|
1000 | 2200 | 9540 | 14600 | 0.28 | 0.28 | 2200 | 0 |
ρ/ (kg·m-3) | A/ GPa | B/ GPa | R1 | R2 | ω | Eq/ (GJ·m-3) | / GPa |
---|---|---|---|---|---|---|---|
1890 | 778.28 | 7.07 | 4.20 | 1.00 | 0.30 | 10.50 | 42.00 |
Table 2 HMX material parameters
ρ/ (kg·m-3) | A/ GPa | B/ GPa | R1 | R2 | ω | Eq/ (GJ·m-3) | / GPa |
---|---|---|---|---|---|---|---|
1890 | 778.28 | 7.07 | 4.20 | 1.00 | 0.30 | 10.50 | 42.00 |
ρ/ (kg·m-3) | Gruneisen 系数 | C0/ (m·s-1) | S1 | S2 |
---|---|---|---|---|
4419 | 1.23 | 5130 | 1.028 | 0 |
Table 3 Shock equation parameters
ρ/ (kg·m-3) | Gruneisen 系数 | C0/ (m·s-1) | S1 | S2 |
---|---|---|---|---|
4419 | 1.23 | 5130 | 1.028 | 0 |
G0/ GPa | Y0/ GPa | Ymax/ GPa | β | n | G'P | G'T/ (MPa·K-1) | Y'P |
---|---|---|---|---|---|---|---|
41.9 | 1.33 | 2.12 | 12 | 0.1 | 0.4819 | -26.98 | -0.0153 |
Table 4 Parameters of the steinberg Guinan constitutive model
G0/ GPa | Y0/ GPa | Ymax/ GPa | β | n | G'P | G'T/ (MPa·K-1) | Y'P |
---|---|---|---|---|---|---|---|
41.9 | 1.33 | 2.12 | 12 | 0.1 | 0.4819 | -26.98 | -0.0153 |
序号 | ρ/(kg·m-3) | p/MPa | c/(m·s-1) |
---|---|---|---|
1 | 1.674 | 0 | 265 |
2 | 1.739 | 4.577 | 852 |
3 | 1.874 | 14.98 | 1721 |
4 | 1.997 | 29.15 | 1875 |
5 | 2.143 | 59.17 | 2265 |
6 | 2.250 | 98.10 | 2956 |
7 | 2.380 | 179.4 | 3112 |
8 | 2.485 | 289.4 | 4600 |
9 | 2.585 | 450.2 | 4634 |
10 | 2.631 | 650.7 | 4634 |
Table 5 Sand material parameters
序号 | ρ/(kg·m-3) | p/MPa | c/(m·s-1) |
---|---|---|---|
1 | 1.674 | 0 | 265 |
2 | 1.739 | 4.577 | 852 |
3 | 1.874 | 14.98 | 1721 |
4 | 1.997 | 29.15 | 1875 |
5 | 2.143 | 59.17 | 2265 |
6 | 2.250 | 98.10 | 2956 |
7 | 2.380 | 179.4 | 3112 |
8 | 2.485 | 289.4 | 4600 |
9 | 2.585 | 450.2 | 4634 |
10 | 2.631 | 650.7 | 4634 |
距离/ mm | 数值计算/ MPa | Zhang 方程/MPa | Cole 经验公式 /MPa | 数值计算与 Zhang方程 误差/% | 数值计算与 Cole经验公 式误差/% |
---|---|---|---|---|---|
400 | 189.35 | 202.25 | 174.32 | -6.42 | 8.62 |
600 | 106.44 | 112.41 | 97.53 | -5.31 | 9.13 |
800 | 71.58 | 75.84 | 69.74 | -5.61 | 2.64 |
1000 | 53.04 | 57.40 | 54.20 | -7.59 | -2.14 |
Table 6 Simulation calculation and theoretical results of peak pressure of shock wave
距离/ mm | 数值计算/ MPa | Zhang 方程/MPa | Cole 经验公式 /MPa | 数值计算与 Zhang方程 误差/% | 数值计算与 Cole经验公 式误差/% |
---|---|---|---|---|---|
400 | 189.35 | 202.25 | 174.32 | -6.42 | 8.62 |
600 | 106.44 | 112.41 | 97.53 | -5.31 | 9.13 |
800 | 71.58 | 75.84 | 69.74 | -5.61 | 2.64 |
1000 | 53.04 | 57.40 | 54.20 | -7.59 | -2.14 |
测点 | 实验数据/MPa | 计算数据/MPa | 误差/% |
---|---|---|---|
P1 | 14.94 | 15.52 | 3.88 |
P2 | 12.20 | 12.63 | 3.52 |
P3 | 9.60 | 9.81 | 2.19 |
P4 | 7.36 | 7.4 | 0.54 |
P5 | 5.52 | 5.49 | -0.54 |
P6 | 8.83 | 8.01 | -9.29 |
P7 | 4.39 | 4.25 | -3.19 |
P8 | 3.23 | 3.28 | 1.55 |
P9 | 3.57 | 3.24 | -9.24 |
P10 | 28.82 | 29.98 | 4.02 |
Table 7 Comparison between the experimental data of shock wave pressure and the calculated data[23]
测点 | 实验数据/MPa | 计算数据/MPa | 误差/% |
---|---|---|---|
P1 | 14.94 | 15.52 | 3.88 |
P2 | 12.20 | 12.63 | 3.52 |
P3 | 9.60 | 9.81 | 2.19 |
P4 | 7.36 | 7.4 | 0.54 |
P5 | 5.52 | 5.49 | -0.54 |
P6 | 8.83 | 8.01 | -9.29 |
P7 | 4.39 | 4.25 | -3.19 |
P8 | 3.23 | 3.28 | 1.55 |
P9 | 3.57 | 3.24 | -9.24 |
P10 | 28.82 | 29.98 | 4.02 |
测点 | 实验结果/MPa | 计算结果/MPa | 误差/% |
---|---|---|---|
P1 | 10.45 | 10.24 | -2.00 |
P2 | 13.03 | 13.23 | -1.53 |
P3 | 6.96 | 7.13 | -2.44 |
P4 | 10.39 | 10.47 | -0.77 |
Table 8 Comparison between the experimental results of shock wave pressure and the calculated results [24]
测点 | 实验结果/MPa | 计算结果/MPa | 误差/% |
---|---|---|---|
P1 | 10.45 | 10.24 | -2.00 |
P2 | 13.03 | 13.23 | -1.53 |
P3 | 6.96 | 7.13 | -2.44 |
P4 | 10.39 | 10.47 | -0.77 |
工况 | 装药形状 | 长径比 | 起爆方式 | 壳体设置 |
---|---|---|---|---|
Case1 | 球形装药 | 中心起爆 | 无壳 | |
Case2 | 柱形装药 | 0.5 | 中心起爆 | 无壳 |
Case3 | 柱形装药 | 1.0 | 中心起爆 | 无壳 |
Case4 | 柱形装药 | 2.0 | 中心起爆 | 无壳 |
Case5 | 球形装药 | 底部起爆 | 无壳 | |
Case6 | 球形装药 | 顶部起爆 | 无壳 | |
Case7 | 球形装药 | 中心起爆 | 底半球壳 | |
Case8 | 球形装药 | 中心起爆 | 完整球壳 |
Table 9 Numerical model case setting for underwater explosion shock wave of cased charge
工况 | 装药形状 | 长径比 | 起爆方式 | 壳体设置 |
---|---|---|---|---|
Case1 | 球形装药 | 中心起爆 | 无壳 | |
Case2 | 柱形装药 | 0.5 | 中心起爆 | 无壳 |
Case3 | 柱形装药 | 1.0 | 中心起爆 | 无壳 |
Case4 | 柱形装药 | 2.0 | 中心起爆 | 无壳 |
Case5 | 球形装药 | 底部起爆 | 无壳 | |
Case6 | 球形装药 | 顶部起爆 | 无壳 | |
Case7 | 球形装药 | 中心起爆 | 底半球壳 | |
Case8 | 球形装药 | 中心起爆 | 完整球壳 |
工况 | 壳体材料 | 厚度比 | 质量比 |
---|---|---|---|
Case 9 | Al 6061-T6 | 2 | 8.95 |
Case 10 | Al 6061-T6 | 4 | 8.95 |
Case 11 | Al 6061-T6 | 6 | 8.95 |
Case 12 | Al 6061-T6 | 8 | 8.95 |
Case 13 (对照组) | Al 6061-T6 | 10 | 8.95 |
Case 14 | Steel 4340 | 10 | 25.86 |
Case 15 | Ti6%Al4%V | 10 | 14.56 |
Table 10 Numerical model case setting for shock wave caused by variable wall thickness sinking bottom explosion
工况 | 壳体材料 | 厚度比 | 质量比 |
---|---|---|---|
Case 9 | Al 6061-T6 | 2 | 8.95 |
Case 10 | Al 6061-T6 | 4 | 8.95 |
Case 11 | Al 6061-T6 | 6 | 8.95 |
Case 12 | Al 6061-T6 | 8 | 8.95 |
Case 13 (对照组) | Al 6061-T6 | 10 | 8.95 |
Case 14 | Steel 4340 | 10 | 25.86 |
Case 15 | Ti6%Al4%V | 10 | 14.56 |
爆距/mm | 冲击波峰值压力/MPa | ||||
---|---|---|---|---|---|
Case 9 | Case 10 | Case 11 | Case 12 | Case 13 | |
400 | 476.27 | 472.43 | 469.93 | 470.93 | 469.95 |
600 | 219.13 | 223.02 | 233.78 | 236.88 | 238.55 |
800 | 152.92 | 150.78 | 159.39 | 163.38 | 167.82 |
1000 | 113.81 | 108.12 | 109.11 | 108.62 | 111.70 |
Table 11 Calculated results of peak shock wave pressure
爆距/mm | 冲击波峰值压力/MPa | ||||
---|---|---|---|---|---|
Case 9 | Case 10 | Case 11 | Case 12 | Case 13 | |
400 | 476.27 | 472.43 | 469.93 | 470.93 | 469.95 |
600 | 219.13 | 223.02 | 233.78 | 236.88 | 238.55 |
800 | 152.92 | 150.78 | 159.39 | 163.38 | 167.82 |
1000 | 113.81 | 108.12 | 109.11 | 108.62 | 111.70 |
爆距/mm | 冲击波峰值压力/MPa | ||
---|---|---|---|
Case 13 | Case 14 | Case 15 | |
400 | 469.95 | 511.15 | 541.31 |
600 | 238.55 | 300.43 | 252.62 |
800 | 167.82 | 182.86 | 179.17 |
1000 | 111.70 | 121.99 | 125.85 |
Table 12 Peak shock wave pressures for different mass ratios
爆距/mm | 冲击波峰值压力/MPa | ||
---|---|---|---|
Case 13 | Case 14 | Case 15 | |
400 | 469.95 | 511.15 | 541.31 |
600 | 238.55 | 300.43 | 252.62 |
800 | 167.82 | 182.86 | 179.17 |
1000 | 111.70 | 121.99 | 125.85 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
梁斌, 卢永刚, 陈忠富, 等. 不同材料壳体装药在空气中爆炸威力试验研究[J]. 现代防御技术, 2008, 36(5):26-31.
|
|
|
[12] |
王长利, 周刚, 蔡宗义, 等. 带壳装药热爆炸冲击波超压测量及分析[J]. 兵工学报, 2012, 33(5):574-578.
|
|
|
[13] |
裴善报, 刘荣忠, 郭锐, 等. 带壳装药水下爆炸的冲击波和气泡脉动特性[J]. 火工品, 2013(2):21-24.
|
|
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
ANSYS. Autodyn explicit software for nonlinear dynamics[M]. Theory Manual Reversion 4.3. Canonsburg,PA,US: Century Dynamics Inc., 2005.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
杨莉, 汪玉, 汪斌, 等. 沉底装药水中爆炸现象的实验研究[J]. 爆炸与冲击, 2013, 33(2):175-180.
|
|
[1] | WANG Ran, ZHANG Yiming, GUO Songlin, WANG Haosen, WANG Ningfei, WU Yi. Dynamic Response and Damage Evolution of Cracked Composite Solid Propellants under Shock Wave Loading [J]. Acta Armamentarii, 2025, 46(7): 240778-. |
[2] | WEI Zhenqian, RONG Jili, WEI Huiyang, LI Furong, CHEN Zichao. Dynamic Response and Energy Dissipation of Foam Aluminum Sandwich Panel Subjected to Underwater Impulsive Loading [J]. Acta Armamentarii, 2025, 46(6): 240539-. |
[3] | LIU Zheng, NIE Jianxin, KAN Runzhe, YANG Jinxiang, TAN Yanwei, GUO Xueyong, YAN Shi. Effect of Aluminum Powder Combustion on the Underwater Explosion Load Characteristics of CL-20-based Mixed Explosives [J]. Acta Armamentarii, 2025, 46(3): 240128-. |
[4] | LI Hongwei, WANG Jiale, LIANG Hao, ZHOU En, SUN Yi, ZHANG Wanlong, GUO Ziru. Effect of Explosion Shock on the Energy Release Characteristics of Ignition Capacitance of Electronic Detonator [J]. Acta Armamentarii, 2025, 46(3): 240221-. |
[5] | YANG Ke, ZHOU Zhangtao, MA Honghao, YAO Xiangyang, FU Liheng, XU Qingtao, SHEN Zhaowu. Study on Pressure Field Characteristics of Underwater Explosion of Neighbor Air Domain Charge Structure [J]. Acta Armamentarii, 2025, 46(1): 231099-. |
[6] | WANG Tao, LIU Liangtao, WANG Jinxiang, ZHANG Yifan. The Damage Characteristics of Underwater Explosion of Explosives with Different Energy Structures on the Side Multi-cabin Structure [J]. Acta Armamentarii, 2025, 46(1): 231201-. |
[7] | YAN Xiaojun, SUN Hao, MA Lin, ZHANG Xuhui, WU Xi, YONG Shunning. Damage Characteristics of Typical Ship Targets Subjected to Underwater Explosion [J]. Acta Armamentarii, 2024, 45(S2): 215-221. |
[8] | ZHANG Yong, XIAO Zhengming, DUAN Hao, WU Xing, LU Min, WANG Hao. Dynamic Response of Vehicle Surface under the Action of Underwater Middle and Far Field Explosion Shock Waves [J]. Acta Armamentarii, 2024, 45(7): 2341-2350. |
[9] | YAN Zechen, YUE Songlin, QIU Yanyu, WANG Jianping, ZHAO Yuetang, SHI Jie, LI Xu. Improvement on the Calculation Method for Reflected Pressure of Shock Wave in Underwater Explosion [J]. Acta Armamentarii, 2024, 45(4): 1196-1207. |
[10] | WANG Haiyang, LONG Renrong, ZHANG Qingming, LIU Bowen, LIAO Chen. Deformation Model of Ring-stiffened Conical-cylindrical Shell under Deep-underwater Explosion Based on Plastic String Method [J]. Acta Armamentarii, 2024, 45(3): 705-719. |
[11] | LI Xu, YUE Songlin, QIU Yanyu, WANG Mingyang, DENG Shuxin, LIU Niannian. Experimental Study on Interaction between Bubble and Concrete Composite Slab in Near-field Underwater Explosion [J]. Acta Armamentarii, 2023, 44(S1): 79-89. |
[12] | ZHOU Longyun, LI Xiaojun, YAN Qiushi. Analysis on Dynamic Response of Bridge Pier under Near-field Underwater Explosion Loading [J]. Acta Armamentarii, 2023, 44(S1): 90-98. |
[13] | LI Furong, RONG Jili, WANG Xi, CHEN Zichao, WEI Zhenqian, ZHAO Zitong. Research on Impact Resistance and Failure Modes of Pyramid Sandwich Panel Subjected to Underwater Explosion [J]. Acta Armamentarii, 2023, 44(7): 1954-1965. |
[14] | SHEN Chao, ZHANG Lei, ZHOU Zhangtao, LIU Jianhu. Mechanism of Dynamic Responses of Grillage Structures under Loads of Close-in and Contact Underwater Explosions [J]. Acta Armamentarii, 2023, 44(4): 1050-1061. |
[15] | CHEN Yanwu, SUN Yuanxiang, WANG Cheng. Damage Characteristics of Ship’s Double Bottom Structure Subjected to Underwater Explosion [J]. Acta Armamentarii, 2023, 44(3): 670-681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||