
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (8): 240827-.doi: 10.12382/bgxb.2024.0827
Previous Articles Next Articles
WANG Zhuoyao1, LI Chuanjun1,*(
), MA Jingquan1, YU Jiaqi2
Received:2024-09-11
Online:2025-08-28
Contact:
LI Chuanjun
CLC Number:
WANG Zhuoyao, LI Chuanjun, MA Jingquan, YU Jiaqi. Real-time Coordinated Trajectory Planning Method of Unpowered Gliding Vehicle Clusters[J]. Acta Armamentarii, 2025, 46(8): 240827-.
Add to citation manager EndNote|Ris|BibTeX
| 飞行器编号及构型 | 高度/km | 经度/(°) | 纬度/(°) |
|---|---|---|---|
| 0(主弹) | 45.0 | 100.0 | 20.000 |
| 1(从弹) | 45.0 | 99.8 | 20.015 |
| 2(从弹) | 45.0 | 100.2 | 20.015 |
| 3(从弹) | 45.0 | 100.1 | 20.010 |
| 4(从弹) | 45.0 | 99.9 | 20.010 |
| 散开构型 | 飞行器集群以主弹为中心 横向各弹之间依次距离10km | ||
| 紧凑构型 | 飞行器集群以主弹为中心 横向各弹之间依次距离1km | ||
Table 1 Reentry initial conditions of unpowered gliding vehicle cluster
| 飞行器编号及构型 | 高度/km | 经度/(°) | 纬度/(°) |
|---|---|---|---|
| 0(主弹) | 45.0 | 100.0 | 20.000 |
| 1(从弹) | 45.0 | 99.8 | 20.015 |
| 2(从弹) | 45.0 | 100.2 | 20.015 |
| 3(从弹) | 45.0 | 100.1 | 20.010 |
| 4(从弹) | 45.0 | 99.9 | 20.010 |
| 散开构型 | 飞行器集群以主弹为中心 横向各弹之间依次距离10km | ||
| 紧凑构型 | 飞行器集群以主弹为中心 横向各弹之间依次距离1km | ||
| 参数 | 从弹编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 目标区域更新前协同误差/km | -0.579 | 0.577 | 0.316 | -0.420 |
| 目标区域更新后协同误差/km | -0.677 | 0.722 | 0.300 | -0.499 |
Table 2 Cooperative control error of formation transformation
| 参数 | 从弹编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 目标区域更新前协同误差/km | -0.579 | 0.577 | 0.316 | -0.420 |
| 目标区域更新后协同误差/km | -0.677 | 0.722 | 0.300 | -0.499 |
| 参数 | 从弹编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 目标区域更新前协同误差/km | -0.316 | 0.172 | -1.010 | 1.040 |
| 目标区域更新后协同误差/km | 0.004 | 0.256 | -0.087 | 1.578 |
Table 3 Collaborative control error
| 参数 | 从弹编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 目标区域更新前协同误差/km | -0.316 | 0.172 | -1.010 | 1.040 |
| 目标区域更新后协同误差/km | 0.004 | 0.256 | -0.087 | 1.578 |
| 飞行器 | 高度/km | 经度/(°) | 纬度/(°) |
|---|---|---|---|
| 主弹 | 45 | 100.00 | 20.000 |
| 从弹1 | 45 | 99.80 | 20.015 |
| 从弹2 | 45 | 99.85 | 20.018 |
| 从弹3 | 45 | 99.90 | 20.016 |
| 从弹4 | 45 | 99.95 | 20.014 |
Table 4 Monte Carlo cooperative control of the error initial conditions
| 飞行器 | 高度/km | 经度/(°) | 纬度/(°) |
|---|---|---|---|
| 主弹 | 45 | 100.00 | 20.000 |
| 从弹1 | 45 | 99.80 | 20.015 |
| 从弹2 | 45 | 99.85 | 20.018 |
| 从弹3 | 45 | 99.90 | 20.016 |
| 从弹4 | 45 | 99.95 | 20.014 |
Fig.22 The influences of different aerodynamic deviations on the formation transformation of vehicle cluster and the real-time track curve of terminal entry angle constraint under target area renewal
| 气动偏差/% | 从弹编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 0 | 0.004 | 0.256 | -0.087 | 1.578 |
| 5 | -0.617 | 0.643 | 0.937 | -0.585 |
| 10 | -0.707 | 0.870 | 1.185 | -0.294 |
| 20 | -0.027 | 1.074 | 1.337 | -0.220 |
Table 5 Collaborative control error after the target area is updated km
| 气动偏差/% | 从弹编号 | |||
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | |
| 0 | 0.004 | 0.256 | -0.087 | 1.578 |
| 5 | -0.617 | 0.643 | 0.937 | -0.585 |
| 10 | -0.707 | 0.870 | 1.185 | -0.294 |
| 20 | -0.027 | 1.074 | 1.337 | -0.220 |
| 从弹1 | 从弹2 | 从弹3 | 从弹4 |
|---|---|---|---|
| -0.124 | -0.454 | -0.457 | 1.777 |
Table 6 Collaborative control error after the second update of target area km
| 从弹1 | 从弹2 | 从弹3 | 从弹4 |
|---|---|---|---|
| -0.124 | -0.454 | -0.457 | 1.777 |
| [1] |
张远, 黄旭, 路坤锋, 等. 高超声速飞行器控制技术研究进展与展望[J]. 宇航学报, 2022, 43(7):866-879.
|
|
|
|
| [2] |
|
| [3] |
|
| [4] |
郭明坤, 杨峰, 刘凯, 等. 无动力滑翔飞行器协同制导技术研究进展[J]. 空天技术, 2022(2):75-84.
|
|
|
|
| [5] |
赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1):020256.
|
|
|
|
| [6] |
郑卓, 路坤锋, 王昭磊, 等. 飞行器集群协同控制技术分析与展望[J]. 宇航学报, 2023, 44(4):538-545.
|
|
|
|
| [7] |
张源, 张冉, 李惠峰. 复杂禁飞区无动力滑翔飞行器路径-轨迹双层规划[J]. 宇航学报, 2022, 43(5):615-627.
|
|
|
|
| [8] |
朱金冬, 张方齐, 赵彤. 任务规划系统机动模型与航线设计[J]. 航空工程进展, 2022, 13(4):73-82.
|
|
|
|
| [9] |
王磊, 徐超, 李淼, 等. 多飞行器协同任务分配的改进粒子群优化算法[J]. 兵工学报, 2023, 44(8):2224-2232.
doi: 10.12382/bgxb.2022.0968 |
|
doi: 10.12382/bgxb.2022.0968 |
|
| [10] |
|
| [11] |
魏昀鹏, 都延丽, 王文凯, 等. 无动力滑翔飞行器时间协同预测校正鲁棒制导[J]. 宇航学报, 2024, 45(3):421-432.
|
|
|
|
| [12] |
|
| [13] |
姜鹏, 郭栋, 韩亮, 等. 多飞行器再入段时间协同弹道规划方法[J]. 航空学报, 2020, 41(增刊1):723776.
|
|
doi: 10.7527/S1000-6893.2019.23776 |
|
| [14] |
乔浩, 毛瑞, 白凤科, 等. 带时间约束的双参数再入轨迹设计方法[J]. 弹箭与制导学报, 2021, 41(3) :57-61.
doi: 10.15892/j.cnki.djzdxb.2021.03.013 |
|
|
|
| [15] |
池海红, 周明鑫. 融合强化学习和进化算法的无动力滑翔航迹规划[J]. 控制理论与应用, 2022, 39(5):847-856.
|
|
|
|
| [16] |
张晚晴, 余文斌, 李静琳, 等. 基于纵程解析解的飞行器智能横程机动再入协同制导[J]. 兵工学报, 2021, 42(7):1400-1411.
|
|
doi: 10.3969/j.issn.1000-1093.2021.07.007 |
|
| [17] |
|
| [18] |
王少平, 董受全, 隋先辉, 等. 助推滑翔无动力滑翔导弹发展趋势及作战使用研究[J]. 战术导弹技术, 2020(1):9-14.
|
|
|
|
| [19] |
|
| [20] |
|
| [21] |
张磊, 罗迎, 张群. 雷达组网系统对抗有源干扰方法综述[J]. 信息对抗技术, 2023, 2(6):1-16.
|
|
|
|
| [22] |
韩晓斐, 何华锋, 何耀民, 等. 主被动异构弹载雷达组网抑制假目标干扰方法[J]. 兵工学报, 2022, 43(12):3142-3150.
|
|
doi: 10.12382/bgxb.2021.0716 |
|
| [23] |
张俊, 胡生亮, 杨庆, 等. 浮空式角反射体RCS统计特征及识别模型研究[J]. 系统工程与电子技术, 2019, 41(4):780-786.
|
|
|
|
| [24] |
宋瑞, 朱勇, 徐广通, 等. 基于序列凸优化的高超声速飞行器协同再入轨迹规划[J]. 战术导弹技术, 2020(6):7-16.
|
|
|
| [1] | JI Lu, CHEN Chao, CHEN Heng. 3D Trajectory Planning of UAVs Based on Improved Dung Beetle Optimization Algorithm [J]. Acta Armamentarii, 2025, 46(9): 241068-. |
| [2] | ZHANG Yue, ZHANG Ning, XU Xiping, PAN Yue. UAV Trajectory Planning under Complex Constraints Based on GOTDBO Algorithm [J]. Acta Armamentarii, 2025, 46(8): 240997-. |
| [3] | WANG Zeqing, XU Haixiang, YU Wenzhao, DU Zhe, WANG Hongmei. Dual-Loop Prescribed-Time 3D Formation Control of Underactuated Multi-AUVs [J]. Acta Armamentarii, 2025, 46(8): 250046-. |
| [4] | LI Junhui, WANG Wei, WANG Yuchen, JI Yi. Unmanned Aerial Vehicle Formation Control Based on Prescribed-time Consensus Theory [J]. Acta Armamentarii, 2025, 46(8): 240863-. |
| [5] | XU Yang, WEI Chao, FENG Fuyong, HU Leyun. Autonomous Landing of UAVs based on Spatio-temporal Decomposition Planning [J]. Acta Armamentarii, 2025, 46(7): 240653-. |
| [6] | HE Yang, LI Gang. Research on Trajectory Planning Control Method of Intelligent Vehicle Based on Velocity Obstacle Model [J]. Acta Armamentarii, 2025, 46(4): 240058-. |
| [7] | QIN Boyu, ZHANG Dong, TANG Shuo. A Discussion on Key Issues and Technologies of Aircraft Swarm Safety Control [J]. Acta Armamentarii, 2025, 46(4): 240215-. |
| [8] | HOU Tianle, BI Wenhao, HUANG Zhanjun, LI Minghao, ZHANG An. Prescribed-time Formation Control with Event-triggering Mechanism for Multi-agent Systems [J]. Acta Armamentarii, 2025, 46(4): 240292-. |
| [9] | WANG Haoning, GUO Jie, WAN Yangyang, ZHANG Baochao, TANG Shengjing, LI Xiang. Formation Control of Hypersonic Glide Vehicles Considering Position Adjustment in Launch Direction [J]. Acta Armamentarii, 2025, 46(4): 240410-. |
| [10] | NAN Wenjiang, YAN Xunliang, YANG Yuxuan, WANG Peichen. Rapid Planning of Longitudinal-lateral Comprehensive Control Reentry Gliding Trajectory Considering Time Constraints [J]. Acta Armamentarii, 2025, 46(3): 240154-. |
| [11] | LI Yaxuan, LIU Xinfu. Real-time Trajectory Planning for Fixed-wing UAVs Based on Exact Convex Relaxation [J]. Acta Armamentarii, 2025, 46(3): 240362-. |
| [12] | HU Yanyang, HE Fan, BAI Chengchao. Cooperative Obstacle Avoidance Decision Method for the Terminal Guidance Phase of Hypersonic Vehicles [J]. Acta Armamentarii, 2024, 45(9): 3147-3160. |
| [13] | WANG Dongzhen, ZHANG Yue, ZHAO Yu, HUANG Daqing. A UAV Trajectory Optimization Method Based on RRT-Dubins [J]. Acta Armamentarii, 2024, 45(8): 2761-2773. |
| [14] | WANG Peichen, YAN Xunliang, NAN Wenjiang, LI Xinguo. A Rapid and Near Analytic Planning Method for Gliding Trajectory under Time Constraints [J]. Acta Armamentarii, 2024, 45(7): 2294-2305. |
| [15] | YIN Qiulin, CHEN Qi, WANG Zhongyuan, WANG Qinghai. Rapid Trajectory Planning for Glide-guided Projectiles in Single-gun Multi-shot Scenarios Considering Time-spatial Coordination [J]. Acta Armamentarii, 2024, 45(3): 798-809. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||