Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (2): 240222-.doi: 10.12382/bgxb.2024.0222
Previous Articles Next Articles
XIAO Liujun, LI Yaxuan, LIU Xinfu*()
Received:
2024-03-28
Online:
2025-02-28
Contact:
LIU Xinfu
CLC Number:
XIAO Liujun, LI Yaxuan, LIU Xinfu. Adaptive Terminal Guidance for Hypersonic Gliding Vehicles Using Reinforcement Learning[J]. Acta Armamentarii, 2025, 46(2): 240222-.
Add to citation manager EndNote|Ris|BibTeX
层数 | 神经元数量 | 激活函数 |
---|---|---|
输入层 | 5 | Tanh |
隐藏层1 | 24 | Tanh |
隐藏层2 | 18 | Tanh |
输出层 | 2 |
Table 1 Network layer size
层数 | 神经元数量 | 激活函数 |
---|---|---|
输入层 | 5 | Tanh |
隐藏层1 | 24 | Tanh |
隐藏层2 | 18 | Tanh |
输出层 | 2 |
飞行器起始状态参数 | 取值范围 |
---|---|
速度v/(m·s-1) | (1700,1800) |
水平面弹目距离d/km | (-40,-30) |
弹道倾角γ/(°) | (-7.5,-2.5) |
弹道偏角ψ/(°) | (5,15) |
Table 2 Initial state parameters of terminal guidance of aerial vehicle
飞行器起始状态参数 | 取值范围 |
---|---|
速度v/(m·s-1) | (1700,1800) |
水平面弹目距离d/km | (-40,-30) |
弹道倾角γ/(°) | (-7.5,-2.5) |
弹道偏角ψ/(°) | (5,15) |
参数 | 控制响应延迟/s | 气动参数偏差/% | 状态测量噪声/% |
---|---|---|---|
工况1 | 0.1 | 0 | 0 |
工况2 | 0 | 10 | 0 |
工况3 | 0.1s | 10 | 1 |
Table 3 Description of operating parameters
参数 | 控制响应延迟/s | 气动参数偏差/% | 状态测量噪声/% |
---|---|---|---|
工况1 | 0.1 | 0 | 0 |
工况2 | 0 | 10 | 0 |
工况3 | 0.1s | 10 | 1 |
学习率 | 优化器 | 折扣因子 | 取样数 | 经验池 |
---|---|---|---|---|
1×10-4 | Adam | 0.99 | 128 | 1×106 |
Table 4 Parameters of DDPG algorithm
学习率 | 优化器 | 折扣因子 | 取样数 | 经验池 |
---|---|---|---|---|
1×10-4 | Adam | 0.99 | 128 | 1×106 |
方法 | 工况1 | 工况2 | 工况3 |
---|---|---|---|
开环指令制导 | 154.09 | 669.11 | 869.11 |
监督学习制导 | 35.86 | 106.27 | 139.02 |
强化学习自适应制导 | 5.62 | 12.78 | 15.45 |
Table 5 Miss distances of different methods m
方法 | 工况1 | 工况2 | 工况3 |
---|---|---|---|
开环指令制导 | 154.09 | 669.11 | 869.11 |
监督学习制导 | 35.86 | 106.27 | 139.02 |
强化学习自适应制导 | 5.62 | 12.78 | 15.45 |
[1] |
董金鲁, 马悦萌, 周荻, 等. 临近空间高超声速飞行器的直接力与襟翼复合滑模控制[J]. 兵工学报, 2023, 44(2):496-506.
doi: 10.12382/bgxb.2021.0690 |
doi: 10.12382/bgxb.2021.0690 |
|
[2] |
|
[3] |
刘畅, 王江, 范世鹏, 等. 基于BP神经网络的自适应偏置比例导引[J]. 兵工学报, 2022, 43(11):2798-2809.
|
doi: 10.12382/bgxb.2021.0594 |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
李庆波, 李芳, 董瑞星, 等. 利用强化学习开展比例导引律的导航比设计[J]. 兵工学报, 2022, 43(12):3040-3047.
|
doi: 10.12382/bgxb.2021.0631 |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[1] | SUN Hao, LI Haiqing, LIANG Yan, MA Chaoxiong, WU Han. Dynamic Penetration Decision of Loitering Munition Group Based on Knowledge-assisted Reinforcement Learning [J]. Acta Armamentarii, 2024, 45(9): 3161-3176. |
[2] | HU Yanyang, HE Fan, BAI Chengchao. Cooperative Obstacle Avoidance Decision Method for the Terminal Guidance Phase of Hypersonic Vehicles [J]. Acta Armamentarii, 2024, 45(9): 3147-3160. |
[3] | CHEN Wenjie, CUI Xiaohong, WANG Binrui. Safety Optimal Tracking Control Algorithm and Robot Arm Simulation [J]. Acta Armamentarii, 2024, 45(8): 2688-2697. |
[4] | WANG Xiaolong, CHEN Yang, HU Mian, LI Xudong. Robot Path Planning for Persistent Monitoring Based on Improved Deep Q Networks [J]. Acta Armamentarii, 2024, 45(6): 1813-1823. |
[5] | LOU Shuhan, WANG Chongchong, GONG Wei, DENG Liyuan, LI Li. Collaborative Regional Information Collection Strategy Based on MLAT-DRL Algorithm [J]. Acta Armamentarii, 2024, 45(12): 4423-4434. |
[6] | DONG Mingze, WEN Zhuanglei, CHEN Xiai, YANG Jiongkun, ZENG Tao. Research on Robot Navigation Method Integrating Safe Convex Space and Deep Reinforcement Learning [J]. Acta Armamentarii, 2024, 45(12): 4372-4382. |
[7] | LI Jiashen, WANG Xiaofang, LIN Hai. Intelligent Penetration Policy for Hypersonic Cruise Missiles Based on Virtual Targets [J]. Acta Armamentarii, 2024, 45(11): 3856-3867. |
[8] | FU Yanfang, LEI Kailin, WEI Jianing, CAO Zijian, YANG Bo, WANG Wei, SUN Zelong, LI Qinjie. A Hierarchical Multi-Agent Collaborative Decision-making Method Based on the Actor-critic Framework [J]. Acta Armamentarii, 2024, 45(10): 3385-3396. |
[9] | CAO Zijian, SUN Zelong, YAN Guochuang, FU Yanfang, YANG Bo, LI Qinjie, LEI Kailin, GAO Linghang. Simulation of Reinforcement Learning-based UAV Swarm Adversarial Strategy Deduction [J]. Acta Armamentarii, 2023, 44(S2): 126-134. |
[10] | LI Song, MA Zhuangzhuang, ZHANG Yunlin, SHAO Jinliang. Multi-agent Coverage Path Planning Based on Security Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(S2): 101-113. |
[11] | YANG Jiaxiu, LI Xinkai, ZHANG Hongli, WANG Hao. Robust Tracking of Quadrotor UAVs Based on Integral Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(9): 2802-2813. |
[12] | ZHANG Jiandong, WANG Dinghan, YANG Qiming, SHI Guoqing, LU Yi, ZHANG Yaozhong. Multi-Dimensional Decision-Making for UAV Air Combat Based on Hierarchical Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(6): 1547-1563. |
[13] | LI Chao, WANG Ruixing, HUANG Jianzhong, JIANG Feilong, WEI Xuemei, SUN Yanxin. Autonomous Decision-making and Intelligent Collaboration of UAV Swarms Based on Reinforcement Learning with Sparse Rewards [J]. Acta Armamentarii, 2023, 44(6): 1537-1546. |
[14] | ZHENG Zexin, LI Wei, ZOU Kun, LI Yanfu. Anti-jamming Waveform Design of Ground-based Air Surveillance Radar Based on Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(5): 1422-1430. |
[15] | LI Jiajian, SHI Yanjun, YANG Yu, LI Bo, ZHAO Xijun. Multi-agent Reinforcement Learning-based Offloading Decision for UAV Cluster Combat Tasks [J]. Acta Armamentarii, 2023, 44(11): 3295-3309. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||