[1] |
SUN S B, QIN S S, HAO Y, et al. Underwater acoustic localization of the black box based on generalized second-order time difference of arrival (GSTDOA)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(9):7245-7255.
|
[2] |
ZHOU A L, LI X Y, ZHANG W, et al. A novel cross-attention fusion-based joint training framework for robust underwater acoustic signal recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-16.
|
[3] |
高晓峰, 栗苹, 李国林, 等. 基于互协方差的L型嵌套阵列二维波达方向估计[J]. 兵工学报, 2019, 40(6):1207-1215.
doi: 10.3969/j.issn.1000-1093.2019.06.011
|
|
GAO X F, LI P, LI G L, et al. L-type nested array two-dimensional direction of reach estimation based on cross-covariance[J]. Acta Armamentarii, 2019, 40(6):1207-1215. (in Chinese)
|
[4] |
LIU A F, SHI S G, WANG X Y, et al. Robust DOA estimation method for underwater acoustic vector sensor array in presence of ambient noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-14.
|
[5] |
单泽彪, 常立民, 刘小松, 等. 基于自然对数复合函数近似l0范数的DOA估计[J]. 兵工学报, 2023, 44(5):1521-1528.
|
|
SHAN Z B, CHANG L M, LIU X S, et al. DOA estimation based on approximate l0 norm of natural logarithm composite function[J]. Acta Armamentarii, 2023, 44(5):1521-1528. (in Chinese)
|
[6] |
LI W J, XU X, HUANG X Y, et al. Direction-of-arrival estimation for coherent signals exploiting moving co-prime array[J]. IEEE Signal Processing Letters, 2023, 30:304-308.
|
[7] |
ZHU F Y, CHAI S R, ZOU Y F, et al. An efficient and accurate RCS reconstruction technique using adaptive TLS-ESPRIT algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(1):49-53.
|
[8] |
YANG Z. Nonasymptotic performance analysis of ESPRIT and spatial-smoothing ESPRIT[J]. IEEE Transactions on Information Theory, 2022, 69(1):666-681.
|
[9] |
YANG Z, CHEN X Y, WU X M. A robust and statistically efficient maximum-likelihood method for DOA estimation using sparse linear arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5):6798-6812.
|
[10] |
MENG D D, WANG X P, HUANG M X, et al. Robust weighted subspace fitting for DOA estimation via block sparse recovery[J]. IEEE Communications Letters, 2019, 24(3):563-567.
|
[11] |
TUCKER D, ZHAO S, POTTER C. Maximum likelihood estimation in mixed integer linear models[J]. IEEE Signal Processing Letters, 2023, 30:1557-1561.
doi: 10.1109/lsp.2023.3324833
pmid: 37981947
|
[12] |
SCHENCK D, LUBBE K, TRINH-HOANG M, et al. Partially relaxed orthogonal least squares weighted subspace fitting direction-of-arrival estimation[C]// Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing. Singapore:IEEE, 2022:5028-5032.
|
[13] |
ZHAO J W, LIU J, GAO F F, et al. Gridless compressed sensing based channel estimation for UAV wideband communications with beam squint[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10):10265-10277.
|
[14] |
HUANG Z K, WANG W, ZHANG B, et al. Measurement matrix design based on compressed sensing for DOA estimation[C]// Proceedings of 2018 14th IEEE International Conference on Signal Processing. Beijing,China: IEEE, 2018:167-171.
|
[15] |
MALIOUTOV D, CETIN M, WILLSKY S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8):3010-3022.
|
[16] |
COUTINO M, PRIBIC R, LEUS G. Direction of arrival estimation based on information geometry[C]// Proceedings of 2016 IEEE International Conference on Acoustics,Speech and Signal Processing. Shanghai,China: IEEE, 2016:066-3070.
|
[17] |
DONG Y Y, DONG C X, LIU W, et al. Scaling transform based information geometry method for DOA estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6):3640-3650.
|
[18] |
WU H, CHENG Y Q, CHEN X X, et al. Power spectrum information geometry-based radar target detection in heterogeneous clutter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62:1-16.
|
[19] |
ARNAUDON M, BARBARESCO F, YANG L. Riemannian medians and means with applications to radar signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4):595-604.
|
[20] |
WANG J L, ZHANG C X, AHN C K, et al. Continuous-discrete cubature Kalman filter with Log-Euclidean metric-based covariance integration[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2023, 70(11):4281-4285.
|
[21] |
ZHANG F F, ZHANG T Z, MAO Q R, et al. Geometry guided pose-invariant facial expression recognition[J]. IEEE Transactions on Image Processing, 2020, 29:4445-4460.
|
[22] |
YE S, ZHANG F, GAO F, et al. Fault diagnosis for multilevel converters based on an affine-invariant Riemannian metric autoencoder[J]. IEEE Transactions on Industrial Informatics, 2022, 19(3):2619-2628.
|
[23] |
LIU, Q G, SHAO G G, WANG Y H, et al. Log-euclidean metrics for contrast preserving decolorization[J]. IEEE Transactions on Image Processing, 2017, 26(12):5772-5783.
doi: 10.1109/TIP.2017.2745104
pmid: 28858795
|
[24] |
CHERAIAN A, SRA S, BANERJEE A, et al. Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(9):2161-2174.
|
[25] |
ZHANG J, ZHANG G H, DAI L R. Frequency-invariant sensor selection for MVDR beamforming in wireless acoustic sensor networks[J]. IEEE Transactions on Wireless Communications, 2022, 21(12):10648-10661.
|