
					Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (8): 2224-2232.doi: 10.12382/bgxb.2022.0968
Previous Articles Next Articles
					
													WANG  Lei1, XU  Chao1, LI  Miao1, ZHAO  Huiwu2,*(
)
												  
						
						
						
					
				
Received:2022-10-24
															
							
															
							
															
							
							
																	Online:2023-08-30
															
						Contact:
								ZHAO  Huiwu   
																					CLC Number:
WANG Lei, XU Chao, LI Miao, ZHAO Huiwu. Improved Particle Swarm Optimization Algorithm for Cooperative Task Assignment of Multiple vehicles[J]. Acta Armamentarii, 2023, 44(8): 2224-2232.
Add to citation manager EndNote|Ris|BibTeX
| Ak | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Yk | 0.02 | 0.8 | 0.85 | 0.71 | 1.30 | 1.31 | 0.28 | 0.79 | 1.66 | 2.86 | 2.93 | 2.34 | 1.33 | 2.77 | 
| Zk | -1.21 | 0.62 | 0.73 | 1.22 | 0.26 | 0.21 | 0.60 | 0.97 | 1.25 | 1.93 | 0.34 | 0.01 | 0.21 | 1.21 | 
Table 1 Position, velocity and corresponding distribution vector of a particle
| Ak | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Yk | 0.02 | 0.8 | 0.85 | 0.71 | 1.30 | 1.31 | 0.28 | 0.79 | 1.66 | 2.86 | 2.93 | 2.34 | 1.33 | 2.77 | 
| Zk | -1.21 | 0.62 | 0.73 | 1.22 | 0.26 | 0.21 | 0.60 | 0.97 | 1.25 | 1.93 | 0.34 | 0.01 | 0.21 | 1.21 | 
| 目标 | 位置/10-1km | 价值 | 威胁概率 | 
|---|---|---|---|
| T1 | (67,23) | 20 | 0.1 | 
| T2 | (65,70) | 30 | 0.2 | 
| T3 | (25,55) | 25 | 0.3 | 
| T4 | (8,32) | 40 | 0.2 | 
| T5 | (35,30) | 50 | 0.1 | 
| T6 | (40,44) | 30 | 0.2 | 
| T7 | (42,90) | 25 | 0.15 | 
| T8 | (19,40) | 40 | 0.2 | 
| T9 | (60,35) | 25 | 0.3 | 
| T10 | (66,55) | 30 | 0.2 | 
| T11 | (80,98) | 50 | 0.12 | 
| T12 | (94,89) | 50 | 0.25 | 
| T13 | (32,65) | 40 | 0.2 | 
| T14 | (87,30) | 30 | 0.1 | 
| T15 | (87,30) | 30 | 0. | 
Table 2 Target situations
| 目标 | 位置/10-1km | 价值 | 威胁概率 | 
|---|---|---|---|
| T1 | (67,23) | 20 | 0.1 | 
| T2 | (65,70) | 30 | 0.2 | 
| T3 | (25,55) | 25 | 0.3 | 
| T4 | (8,32) | 40 | 0.2 | 
| T5 | (35,30) | 50 | 0.1 | 
| T6 | (40,44) | 30 | 0.2 | 
| T7 | (42,90) | 25 | 0.15 | 
| T8 | (19,40) | 40 | 0.2 | 
| T9 | (60,35) | 25 | 0.3 | 
| T10 | (66,55) | 30 | 0.2 | 
| T11 | (80,98) | 50 | 0.12 | 
| T12 | (94,89) | 50 | 0.25 | 
| T13 | (32,65) | 40 | 0.2 | 
| T14 | (87,30) | 30 | 0.1 | 
| T15 | (87,30) | 30 | 0. | 
| 编号 | 位置/10-1km | 价值 | 杀伤概率 | 任务上限 | 
|---|---|---|---|---|
| U1 | (45,3) | 130 | 0.9 | 5 | 
| U2 | (34,5) | 100 | 0.8 | 5 | 
| U3 | (23,3) | 80 | 0.7 | 5 | 
Table 3 UAV situations
| 编号 | 位置/10-1km | 价值 | 杀伤概率 | 任务上限 | 
|---|---|---|---|---|
| U1 | (45,3) | 130 | 0.9 | 5 | 
| U2 | (34,5) | 100 | 0.8 | 5 | 
| U3 | (23,3) | 80 | 0.7 | 5 | 
| 算法 | U1 | U2 | U3 | 
|---|---|---|---|
| MPSO算法 | <T16, T13, T7,  T2,T10>  |  <T14, T6, T5,  T9>  |  <T11, T1, T8,  T4, T12>  | 
| PSO1算法 | <T11, T12, T14,  T15, T4>  |  <T1, T2, T3,  T5,T8>  |  <T6, T7, T9,  T10, T13>  | 
| PSO算法 | <T3, T11, T8,  T6, T13>  |  <T5, T14, T15,  T7, T9>  |  < T2, T12, T11, T4, T10>  | 
| GA | <T4, T7, T10, T9, T12>  |  <T3, T11, T2,  T15, T1>  |  < T6, T8, T5,  T13, T14>  | 
Table 4 Optimal assignment solutions of different algorithms
| 算法 | U1 | U2 | U3 | 
|---|---|---|---|
| MPSO算法 | <T16, T13, T7,  T2,T10>  |  <T14, T6, T5,  T9>  |  <T11, T1, T8,  T4, T12>  | 
| PSO1算法 | <T11, T12, T14,  T15, T4>  |  <T1, T2, T3,  T5,T8>  |  <T6, T7, T9,  T10, T13>  | 
| PSO算法 | <T3, T11, T8,  T6, T13>  |  <T5, T14, T15,  T7, T9>  |  < T2, T12, T11, T4, T10>  | 
| GA | <T4, T7, T10, T9, T12>  |  <T3, T11, T2,  T15, T1>  |  < T6, T8, T5,  T13, T14>  | 
| 算法 | 最优适应度值 | 平均适应度值 | 平均运行时间/s | 
|---|---|---|---|
| MPSO算法 | 562.85 | 563.45 | 20.2 | 
| PSO1算法 | 574.55 | 575.30 | 25.3 | 
| PSO算法 | 567.44 | 568.81 | 26.3 | 
| GA | 563.08 | 567.63 | 15.9 | 
Table 5 Comparison of average fitness value and optimal fitness value under different algorithms
| 算法 | 最优适应度值 | 平均适应度值 | 平均运行时间/s | 
|---|---|---|---|
| MPSO算法 | 562.85 | 563.45 | 20.2 | 
| PSO1算法 | 574.55 | 575.30 | 25.3 | 
| PSO算法 | 567.44 | 568.81 | 26.3 | 
| GA | 563.08 | 567.63 | 15.9 | 
| [1] |  
											 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5):37-43. 
																						 | 
										
|  
											 | 
										|
| [2] |  
											 | 
										
| [3] |  
											 齐小刚, 李博, 范英盛, 等. 多约束下多无人机的任务规划研究综述[J]. 智能系统学报, 2020, 15(2):204-217. 
																						 | 
										
|  
											 | 
										|
| [4] |  
											 doi: 10.1016/j.cor.2010.06.001 URL  | 
										
| [5] |  
											 doi: 10.2514/1.C032309 URL  | 
										
| [6] |  
											 韩健. 基于多Agent的无人机协作控制[D]. 哈尔滨: 哈尔滨工业大学, 2012. 
																						 | 
										
|  
											 | 
										|
| [7] |  
											 | 
										
| [8] |  
											 doi: 10.1007/s10846-014-0154-2 URL  | 
										
| [9] |  
											 | 
										
| [10] |  
											 苏菲, 陈岩, 沈林成. 基于蚁群算法的无人机协同多任务分配[J]. 航空学报, 2008, 29(5): 184-191. 
																						 | 
										
|  
											 | 
										|
| [11] |  
											 | 
										
| [12] |  
											 | 
										
| [13] |  
											 doi: 10.1016/j.engappai.2010.12.002 URL  | 
										
| [14] |  
											 doi: 10.1007/s12530-012-9058-1 URL  | 
										
| [15] |  
											 | 
										
| [16] |  
											 李炜, 张伟. 基于粒子群算法的多无人机任务分配方法[J]. 控制与决策, 2010, 25(9):1359-1363. 
																						 | 
										
|  
											 | 
										|
| [17] |  
											 | 
										
| [18] |  
											 doi: 10.1177/1059712316651686 URL  | 
										
| [19] |  
											 李鹏, 李兵舰, 亓亮, 等. 一种改进的粒子群优化算法及其在无人机航路规划中的应用[J]. 舰船电子对抗, 2019, 42(5):59-64. 
																						 | 
										
|  
											 | 
										|
| [20] |  
											 熊华捷, 蔚保国, 何成龙. 基于改进粒子群算法的UAV航迹规划方法[J]. 计算机测量与控制, 2020, 28(2):144-147. 
																						 | 
										
|  
											 | 
										
| [1] | LI Huanhuan, LIU Hui, GAI Jiangtao, LI Xunming. Steering Control of Dual-motor Coupling Drive Tracked Vehicle Based on PSO PID Parameter Optimization [J]. Acta Armamentarii, 2024, 45(3): 916-924. | 
| [2] | FAN Boyang, ZHAO Gaopeng, BO Yuming, WU Xiang. Collaborative Task Allocation Method for Multi-Target Air-Ground Heterogeneous Unmanned System [J]. Acta Armamentarii, 2023, 44(6): 1564-1575. | 
| [3] | DU Weiwei, CHEN Xiaowei. Task Assignment and Optimization Method of Tactical-Level Army Operations [J]. Acta Armamentarii, 2023, 44(5): 1431-1442. | 
| [4] | CHEN Meishan, LIU Ying, ZENG Weigui, QIAN Kun. Dynamic Jamming Resource Allocation Strategy of MALD [J]. Acta Armamentarii, 2023, 44(5): 1443-1455. | 
| [5] | ZHOU Xiaotian, REN Hongbin, SU Bo, QI Zhiquan, WANG Yang. Hierarchical Trajectory Planning Algorithm based on Differential Flatness [J]. Acta Armamentarii, 2023, 44(2): 394-405. | 
| [6] | ZHANG Yuanbo, XIANG Changle, WANG Weida, CHEN Yongdan. A Particle Swarm Optimization and Ant Colony Optimization Fusion Algorithm-based Model Predictve Torque Coordnation Control Strategy for Distributed Electric Drive Vehicle [J]. Acta Armamentarii, 2023, 44(11): 3253-3258. | 
| [7] | LI Ye, ZHENG Chun, MA Changsheng, QIU Rongxian. Target Assignment Model for High-Power Microwave Weapon System and Medium and Short-range Air Defense Weapons in Cooperative Combat Based on Maximizing Interception Efficiency [J]. Acta Armamentarii, 2023, 44(11): 3489-3497. | 
| [8] | TANG Zeyue, LIU Haiou, XUE Mingxuan, CHEN Huiyan, GONG Xiaojie, TAO Junfeng. Trajectory Tracking Control of Dual Independent Electric Drive Unmanned Tracked Vehicle Based on MPC-MFAC [J]. Acta Armamentarii, 2023, 44(1): 129-139. | 
| [9] | SHUAI Yong, SONG Tai-liang, WANG Jian-ping, SHEN Hong. An Improved Parallel Prediction Model of Equipment Support Capability [J]. Acta Armamentarii, 2016, 37(6): 1089-1095. | 
| [10] | ZHANG Yong-qiang, XU Zong-chang, SUN Han-bing, HU Chun-yang. Optimization of Carried Spare Parts Based on Monte Carlo Simulation and Parallel Particle Swarm Optimization Algorithm [J]. Acta Armamentarii, 2016, 37(1): 122-130. | 
| [11] | ZHU Xia, CHEN Ren-wen, XIA Hua-kang, ZHANG Piao-yan. A Novel Image Registration Based on Cultural Particle Swarm Optimization Algorithm [J]. Acta Armamentarii, 2015, 36(6): 1033-1039. | 
| [12] | WANG Chao, LIU Rong-zhong, HOU Yuan-long, GAO Qiang, WANG Li. Electric Load Simulator Control Based on a Novel Wavelet Neural Network and Grey Prediction [J]. Acta Armamentarii, 2014, 35(12): 1959-1966. | 
| [13] | XIANG Yu, MA Xiao-jun, LIU Chun-guang, KE Rong-shuo, ZHAO Zi-xu. Estimation of Model Parameters and SOC of Lithium Batteries Based on IPSO-EKF [J]. Acta Armamentarii, 2014, 35(10): 1659-1666. | 
| [14] | HU Ling-ling, GUO Ye-cai. Orthogonal Wavelet Transform Dynamic Weighted Multi-modulus Blind Equalization Algorithm Based on Dynamic Particle Swarm [J]. Acta Armamentarii, 2013, 34(12): 1547-1554. | 
| [15] | SUN Yu-shan, LI Yue-ming, ZHANG Ying-hao, WAN Lei. Improved Simulated Annealing Algorithm and Its Application in Adjusting of S Plane Parameters in AUV Motion Control [J]. Acta Armamentarii, 2013, 34(11): 1418-1423. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||