[1] |
李强, 陈令, 甘怀银, 等. 静电喷雾法制备纳米复合含能材料RDX@NGEC及性能[J]. 兵工学报, 2023, 44(7): 1985-1992.
doi: 10.12382/bgxb.2022.0228
|
|
LI Q, CHEN L, GAN H Y, et al. Electrostatic spraying preparation and performance of nanocomposite energetic material RDX@NGEC[J]. Acta Armamentarii, 2023, 44(7): 1985-1992. (in Chinese)
doi: 10.12382/bgxb.2022.0228
|
[2] |
SULLIVAN K T, ZHU C, DUOSS E B, et al. Controlling material reactivity using architecture[J]. Advanced materials, 2016, 28: 1934-1939.
doi: 10.1002/adma.201504286
|
[3] |
刘洁, 李含健, 任慧, 等. 纳米碳材料对含硼铝热剂燃烧性能的影响[J]. 兵工学报, 2019, 40 (1): 42-48.
doi: 10.3969/j.issn.1000-1093.2019.01.006
|
|
LIU J, LI H J, REN H, et al. Influences of nano-carbon materials on combustion performance of boron-based thermite[J]. Acta Armamentarii, 2019, 40 (1): 42-48. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.01.006
|
[4] |
WU T, SINGH V, JULIEN B, et al. Pioneering insights into the superior performance of titanium as a fuel in energetic materials[J]. Chemical Engineering Journal, 2023, 453: 139922.
|
[5] |
COMET M, MARTIN C, SCHNELL F, et al. Nanothermite foams: From nanopowder to object[J]. Chemical Engineering Journal, 2017, 316: 807-812.
|
[6] |
TANG D Y, FAN Z M, YANG G C, et al. Combustion performance of composite propellants containing core-shell Al@M(IO3)x metastable composites[J]. Combustion and Flame, 2020, 219: 33-43.
|
[7] |
MA X X, LI Y X, HUSSAIN I, et al. Core-shell structured nanoenergetic materials: preparation and fundamental properties[J]. Advanced Materials, 2020, 32: 2001291.
|
[8] |
WANG Y T, ZHANG X T, XU J B, et al. Fabrication and characterization of Al-CuO nanocomposites prepared by sol-gel method[J]. Defence Technology, 2021, 17(4): 1307-1312.
|
[9] |
薛闯, 高贫, 王桂香, 等. Al/Fe2O3纳米铝热剂界面结构和稳定性的周期性密度泛函理论研究[J]. 含能材料, 2022, 30(3): 197-203.
|
|
XUE C, GAO P, WANG G X, et al. Interface structure and stability of Al/Fe2O3 nano-thermite: a periodic DFT study[J]. Chinese Journal of Energetic Materials, 2022, 30(3): 197-203. (in Chinese)
|
[10] |
SHI K W, GUO X D, CHEN L, et al. Alcohol-thermal synthesis of approximately core-shell structured Al@CuO nanothermite with improved heat-release and combustion characteristics[J]. Combustion and Flame, 2021, 228: 331-339.
|
[11] |
YIN Y J, LI X M, SHU Y J, et al. Highly-reactive Al/CuO nanoenergetic materials with a tubular structure[J]. Materials and Design, 2017, 117: 104-110.
|
[12] |
XU F Y, BISWAS P, NAVA G, et al. Tuning the reactivity and energy release rate of I2O5 based ternary thermite systems[J]. Combustion and Flame, 2021, 228: 210-217.
|
[13] |
JIAN G Q, FENG J Y, JACOB R J, et al. Super-reactive nanoenergetic gas generators based on periodate salts[J]. Angewandte Chemie International Edition, 2013, 52(37): 9743-9746.
|
[14] |
YIN Y J, HU F, CHENG L H, et al. Electrophoretic deposition of hybrid organic-inorganic PTFE/Al/CuO energetic film[J]. Defence Technology, 2023, 22: 112-118.
|
[15] |
张纯, 史凯文, 周翔. 静电纺丝工艺制备Si@PVDF纳米结构含能材料[J]. 火工品, 2020(6): 34-37.
|
|
ZHANG C, SHI K W, ZHOU X. Electrospinning preparation of Si@PVDF nanostructured energetic material[J]. Initiators and Pyrotechnics, 2020(6): 34-37. (in Chinese)
|
[16] |
JABRAOUI H, ESTEVE A, HONG S, et al. Initial stage of titanium oxidation in Ti/CuO thermites: a molecular dynamics study using ReaxFF forcefields[J]. Physical Chemistry Chemical Physics, 2023, 25:11268.
doi: 10.1039/d3cp00032j
pmid: 37060120
|
[17] |
QIAO X, CHEN K, CORKETT A J, et al. Synthesis, crystal structure, symmetry relationships and electronic structure of bismuth carbodiimide Bi2(NCN)3 and its ammonia adduct Bi2(NCN)3·NH3[J]. Inorganic Chemistry, 2021, 60: 12664-12670.
|
[18] |
LIU X H, PUSPITOSARI H, DRONSKOWSKI R. An investigation of the formation mechanism of copper (Ⅱ) carbodiimide[J]. Special Issue: Dedicated to Professor Arndt Simon on the Occasion of His 70th Birthday, 2010, 636(1): 121-125.
|
[19] |
MORITA K, GABRIELA M, KANAME Y, et al. Thermal stability, morphology and electronic band gap of Zn(NCN)[J]. Solid State Sciences, 2013, 23: 50-57.
|
[20] |
GUO P H, CAO L Y, WANG R, et al. In situ construction of “Anchor-Like” structures in Fe(NCN) for long cyclic life in sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30: 2000208.
|
[21] |
HERLITSCHKE M, TCHOUGRE'EFF A L, SOUDACKOV A V, et al. Magnetism and lattice dynamics of Fe(NCN) compared to FeO[J]. New Journal of Chemistry, 2014, 38: 4670.
|