Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (1): 231135-.doi: 10.12382/bgxb.2023.1135
Previous Articles Next Articles
ZHAO Xin1,2,*(), SU Tiexiong3, MA Fukang3, SHI Jianhua1,2, CHAI Chang1
Received:
2023-11-27
Online:
2025-01-25
Contact:
ZHAO Xin
CLC Number:
ZHAO Xin, SU Tiexiong, MA Fukang, SHI Jianhua, CHAI Chang. Collaborative Optimization Design Method of Main Bearing Assembly Structure with Multi-structural Characteristics Based on Improved EHO Algorithm[J]. Acta Armamentarii, 2025, 46(1): 231135-.
Add to citation manager EndNote|Ris|BibTeX
方案 序号 | 网格 数量/105 | 机体 应力/MPa | 15mm 截面 失圆度/mm | -15mm 截面 失圆度/mm |
---|---|---|---|---|
1 | 5.6 | 210.9 | 0.1035 | 0.0974 |
2 | 14.9 | 187.6 | 0.0896 | 0.08793 |
3 | 20.3 | 145.7 | 0.0738 | 0.0729 |
4 | 31.4 | 147.1 | 0.0742 | 0.0764 |
5 | 43.8 | 142.8 | 0.0748 | 0.0750 |
Table 1 Grid independence verification schemes and results
方案 序号 | 网格 数量/105 | 机体 应力/MPa | 15mm 截面 失圆度/mm | -15mm 截面 失圆度/mm |
---|---|---|---|---|
1 | 5.6 | 210.9 | 0.1035 | 0.0974 |
2 | 14.9 | 187.6 | 0.0896 | 0.08793 |
3 | 20.3 | 145.7 | 0.0738 | 0.0729 |
4 | 31.4 | 147.1 | 0.0742 | 0.0764 |
5 | 43.8 | 142.8 | 0.0748 | 0.0750 |
设计变量名称 | 最小值 | 最大值 |
---|---|---|
单个竖向螺栓载荷x1/kN | 100 | 250 |
单个横向螺栓载荷x2/kN | 50 | 200 |
主轴瓦过盈量x3/mm | 0.12 | 0.20 |
主轴承座装配侧隙x4/mm | 0.05 | 0.15 |
机体隔板厚度x5/mm | 40 | 48 |
主轴承座厚度x6/mm | 36 | 44 |
机体侧壁竖加强筋厚度x7/mm | 30 | 50 |
Table 2 Design variables and their value ranges
设计变量名称 | 最小值 | 最大值 |
---|---|---|
单个竖向螺栓载荷x1/kN | 100 | 250 |
单个横向螺栓载荷x2/kN | 50 | 200 |
主轴瓦过盈量x3/mm | 0.12 | 0.20 |
主轴承座装配侧隙x4/mm | 0.05 | 0.15 |
机体隔板厚度x5/mm | 40 | 48 |
主轴承座厚度x6/mm | 36 | 44 |
机体侧壁竖加强筋厚度x7/mm | 30 | 50 |
算法1:多目标EHO算法 | |
---|---|
1 | 设种群规模为N |
2 | 对父代种群P按照支配等级和拥挤度进行排序 |
3 | for每个氏族i,i=1,2,…,n,n为种群N中氏族的数量 |
4 | for每个氏族中的大象个体j,j=1,2,…,N/n |
5 | 将父代种群P中第10(j-1)+i个个体作为第i个氏族中的第j个大象个体 |
6 | end_for |
7 | end_for |
8 | 建立临时矩阵Temp,依次放入各氏族大象个体的设计变量 |
9 | 设置氏族更新每个氏族保留优秀个体数量为keep |
10 | for每个氏族i,i=1,2,…,n |
11 | 执行氏族更新 |
12 | 确保氏族更新生成的大象个体处于全局空间 |
13 | 进行非支配排序与拥挤度计算 |
14 | end_for |
15 | for每个氏族i,i=1,2,…,n |
16 | 执行基于自适应策略的个体分离 |
17 | 确保个体分离生成的大象个体处于全局空间 |
18 | 替换氏族中适应度差(排序最后)的大象个体 |
19 | end_for |
20 | 合并各氏族的大象个体作为子代种群S |
Table 3 Pseudo-code of multi-objective EHO algorithm
算法1:多目标EHO算法 | |
---|---|
1 | 设种群规模为N |
2 | 对父代种群P按照支配等级和拥挤度进行排序 |
3 | for每个氏族i,i=1,2,…,n,n为种群N中氏族的数量 |
4 | for每个氏族中的大象个体j,j=1,2,…,N/n |
5 | 将父代种群P中第10(j-1)+i个个体作为第i个氏族中的第j个大象个体 |
6 | end_for |
7 | end_for |
8 | 建立临时矩阵Temp,依次放入各氏族大象个体的设计变量 |
9 | 设置氏族更新每个氏族保留优秀个体数量为keep |
10 | for每个氏族i,i=1,2,…,n |
11 | 执行氏族更新 |
12 | 确保氏族更新生成的大象个体处于全局空间 |
13 | 进行非支配排序与拥挤度计算 |
14 | end_for |
15 | for每个氏族i,i=1,2,…,n |
16 | 执行基于自适应策略的个体分离 |
17 | 确保个体分离生成的大象个体处于全局空间 |
18 | 替换氏族中适应度差(排序最后)的大象个体 |
19 | end_for |
20 | 合并各氏族的大象个体作为子代种群S |
序号 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | Fs,1 | Fs,2 | Fr | Fc | Fl |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 210512.6 | 106276.5 | 0.185 | 0.103 | 42.93 | 43.12 | 32.11 | 0.234 | 0.781 | 0.242 | 0.329 | 0.019 |
2 | 225853.8 | 167072.6 | 0.181 | 0.088 | 43.76 | 43.92 | 32.60 | 0.229 | 0.775 | 0.245 | 0.326 | 0.016 |
3 | 151323.9 | 69629.7 | 0.204 | 0.052 | 42.70 | 42.83 | 38.92 | 0.338 | 0.863 | 0.121 | 0.556 | 0.024 |
4 | 168681.2 | 111287.0 | 0.180 | 0.107 | 43.01 | 43.95 | 32.51 | 0.157 | 0.832 | 0.189 | 0.475 | 0.018 |
5 | 200141.3 | 138133.5 | 0.185 | 0.105 | 36.46 | 36.48 | 32.59 | 0.241 | 0.722 | 0.183 | 0.295 | 0.036 |
6 | 200141.3 | 138133.5 | 0.185 | 0.105 | 36.46 | 36.48 | 32.59 | 0.241 | 0.722 | 0.183 | 0.295 | 0.036 |
7 | 177335.5 | 79778.9 | 0.178 | 0.070 | 36.19 | 36.09 | 38.72 | 0.378 | 0.726 | 0.142 | 0.357 | 0.039 |
8 | 150582.5 | 111464.8 | 0.174 | 0.103 | 42.78 | 42.82 | 32.80 | 0.196 | 0.883 | 0.120 | 0.509 | 0.025 |
Table 4 Reliability matching design results
序号 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | Fs,1 | Fs,2 | Fr | Fc | Fl |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 210512.6 | 106276.5 | 0.185 | 0.103 | 42.93 | 43.12 | 32.11 | 0.234 | 0.781 | 0.242 | 0.329 | 0.019 |
2 | 225853.8 | 167072.6 | 0.181 | 0.088 | 43.76 | 43.92 | 32.60 | 0.229 | 0.775 | 0.245 | 0.326 | 0.016 |
3 | 151323.9 | 69629.7 | 0.204 | 0.052 | 42.70 | 42.83 | 38.92 | 0.338 | 0.863 | 0.121 | 0.556 | 0.024 |
4 | 168681.2 | 111287.0 | 0.180 | 0.107 | 43.01 | 43.95 | 32.51 | 0.157 | 0.832 | 0.189 | 0.475 | 0.018 |
5 | 200141.3 | 138133.5 | 0.185 | 0.105 | 36.46 | 36.48 | 32.59 | 0.241 | 0.722 | 0.183 | 0.295 | 0.036 |
6 | 200141.3 | 138133.5 | 0.185 | 0.105 | 36.46 | 36.48 | 32.59 | 0.241 | 0.722 | 0.183 | 0.295 | 0.036 |
7 | 177335.5 | 79778.9 | 0.178 | 0.070 | 36.19 | 36.09 | 38.72 | 0.378 | 0.726 | 0.142 | 0.357 | 0.039 |
8 | 150582.5 | 111464.8 | 0.174 | 0.103 | 42.78 | 42.82 | 32.80 | 0.196 | 0.883 | 0.120 | 0.509 | 0.025 |
参数名称 | 初值 | 优化值 |
---|---|---|
单个竖向螺栓载荷x1/kN | 200.0 | 210.5 |
单个横向螺栓载荷x2/kN | 98.0 | 106.3 |
主轴瓦过盈量x3/mm | 0.160 | 0.185 |
主轴承座装配侧隙x4/mm | 0.050 | 0.103 |
机体隔板厚度x5/mm | 44.0 | 42.9 |
主轴承座厚度x6/mm | 40.0 | 43.1 |
机体侧壁竖加强筋厚度x7/mm | 30.0 | 32.1 |
Table 5 Design parameters before and after optimization
参数名称 | 初值 | 优化值 |
---|---|---|
单个竖向螺栓载荷x1/kN | 200.0 | 210.5 |
单个横向螺栓载荷x2/kN | 98.0 | 106.3 |
主轴瓦过盈量x3/mm | 0.160 | 0.185 |
主轴承座装配侧隙x4/mm | 0.050 | 0.103 |
机体隔板厚度x5/mm | 44.0 | 42.9 |
主轴承座厚度x6/mm | 40.0 | 43.1 |
机体侧壁竖加强筋厚度x7/mm | 30.0 | 32.1 |
Fig.15 Diagram of strength testing(left:the simulated result of stress concentration area,right:the strength test diagram of stress concentration area)
Fig.18 Principle of circumferential vertical strain measurement of main bearing shell(left:the diagram of measurement process,right:the diagram of measurement assembly)
方案 | 仿真值/MPa | 测量值/MPa | 相对误差/% |
---|---|---|---|
原方案 | 143.48 | 150.3 | 4.5 |
改进方案 | 116.69 | 140.5 | 16.9 |
Table 6 Simulaed and measured values of stresses of engine block
方案 | 仿真值/MPa | 测量值/MPa | 相对误差/% |
---|---|---|---|
原方案 | 143.48 | 150.3 | 4.5 |
改进方案 | 116.69 | 140.5 | 16.9 |
被测截面 | 测点 | 原方案 | 改进方案 | ||
---|---|---|---|---|---|
仿真值/ mm | 测量值/ mm | 仿真值/ mm | 测量值/ mm | ||
15 mm 轴向 截面 | 1 | 0.039 | 0.042 | 0.035 | 0.031 |
2 | 0.040 | 0.039 | 0.034 | 0.034 | |
3 | 0.036 | 0.033 | 0.036 | 0.033 | |
4 | 0.043 | 0.040 | 0.035 | 0.032 | |
-15 mm 轴向 截面 | 1 | 0.037 | 0.034 | 0.034 | 0.030 |
2 | 0.038 | 0.039 | 0.033 | 0.032 | |
3 | 0.040 | 0.037 | 0.035 | 0.034 | |
4 | 0.036 | 0.035 | 0.036 | 0.032 |
Table 7 Comparison of simulated and measured radial deformations
被测截面 | 测点 | 原方案 | 改进方案 | ||
---|---|---|---|---|---|
仿真值/ mm | 测量值/ mm | 仿真值/ mm | 测量值/ mm | ||
15 mm 轴向 截面 | 1 | 0.039 | 0.042 | 0.035 | 0.031 |
2 | 0.040 | 0.039 | 0.034 | 0.034 | |
3 | 0.036 | 0.033 | 0.036 | 0.033 | |
4 | 0.043 | 0.040 | 0.035 | 0.032 | |
-15 mm 轴向 截面 | 1 | 0.037 | 0.034 | 0.034 | 0.030 |
2 | 0.038 | 0.039 | 0.033 | 0.032 | |
3 | 0.040 | 0.037 | 0.035 | 0.034 | |
4 | 0.036 | 0.035 | 0.036 | 0.032 |
[1] |
|
[2] |
|
[3] |
姬亚萌, 张卫正, 原彦鹏, 等. 高强化柴油机活塞加速热疲劳与等效寿命评估方法[J]. 兵工学报, 2022, 43(12):3008-3019.
|
|
|
[4] |
周玮, 廖日东. 高功率密度柴油机主轴承热弹流混合润滑分析[J]. 内燃机学报, 2016, 34(4):370-378.
|
|
|
[5] |
|
[6] |
|
[7] |
郭圣刚, 王建平, 赵忠诚, 等. 金属掺杂对高强化柴油机活塞销类金刚石薄膜涂层摩擦学性能的影响[J]. 兵工学报, 2021, 42(4):715-722.
|
|
|
[8] |
欧阳光耀. 船用高速大功率柴油机运行可靠性与再设计技术[J]. 内燃机学报, 2008, 26(增刊1):40-46.
|
|
|
[9] |
刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7):1246-1278.
|
|
|
[10] |
孟令烁. 柴油机机体组结构协调性设计技术研究[D]. 济南: 山东大学, 2018.
|
|
|
[11] |
马明旭, 王成恩, 张嘉易, 等. 复杂产品多学科设计优化技术[J]. 机械工程学报, 2008, 44(6):15-26.
|
|
|
[12] |
任培荣, 左正兴, 程颖. 内燃机主承力结构响应协调性评价体系研究[C]// 2018中国汽车工程学会年会暨展览会. 上海: 中国汽车工程学会,2018:762-768.
|
|
|
[13] |
唐佳桃, 雷基林, 雷启铭, 等. 柴油机活塞环组动力学特性分析及多目标优化设计[J]. 内燃机工程, 2023, 44(2):73-80.
|
|
|
[14] |
|
[15] |
赵鑫. 基于改进NSGA-Ⅱ算法的主轴承组合结构协调匹配设计方法研究[D]. 太原: 中北大学, 2023.
|
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
李金忠, 夏洁武, 曾小荟, 等. 多目标模拟退火算法及其应用研究进展[J]. 计算机工程与科学, 2013, 35(8):77-88.
|
|
|
[21] |
|
[22] |
章恩泽. 多目标粒子群优化算法及其应用研究[D]. 南京: 南京理工大学, 2018.
|
|
[1] | WAN Silai, WANG Guoxin, MING Zhenjun, LI Chuanhao, YAN Yan, DING Wei, YUAN Ke, WANG Yuqian. Modeling and Optimization Method of Kill Chains Based on AGE-MOEA [J]. Acta Armamentarii, 2024, 45(8): 2617-2628. |
[2] | LIU Shengyu, QI Xiaogang, LIU Lifang. Multi-objective Joint Optimization of Resource Allocation and Task Scheduling for Accompanying Repair [J]. Acta Armamentarii, 2024, 45(7): 2442-2450. |
[3] | WEI Jialin, WANG Youlong, WEN Xuhui, CHEN Chen, LI Wenshan. Optimization Design of a 300kW High-speed Permanent Magnet Synchronous Machine for Aviation Aircraft [J]. Acta Armamentarii, 2024, 45(5): 1363-1373. |
[4] | SUN Shiming, YU Wei, WANG Xiaohui, LI Zhenwang, LIU Cailian. Initial Kinematic Parameters Design of Trans-media Vehicle Skipping over Water Surface Based on Multi-objective Optimization [J]. Acta Armamentarii, 2024, 45(2): 541-551. |
[5] | ZHAO Wei, HOU Baolin. Multi-objective Optimization of Filament Winding Constrained Structure of Electromagnetic Gun [J]. Acta Armamentarii, 2024, 45(11): 3820-3832. |
[6] | FU Yaoyu, GUI Xincheng, ZHOU Yunbo, LIU Jiazhi, SHI Hao, WANG Zheng. Protection Performance Analysis and Optimization Design of Vehicle Roof Sandwich Plateunder Air Explosion Condition of Fragment Warhead [J]. Acta Armamentarii, 2024, 45(1): 69-84. |
[7] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[8] | DU Weiwei, CHEN Xiaowei. Task Assignment and Optimization Method of Tactical-Level Army Operations [J]. Acta Armamentarii, 2023, 44(5): 1431-1442. |
[9] | LI Jingfeng, CHEN Yunxiang, XIANG Huachun, GAO Yangjun, ZHAO Jing. Multi-Objective Spare Parts Scheduling Method in Wartime Considering Lateral Transshipment and Emergency Distribution [J]. Acta Armamentarii, 2023, 44(3): 816-830. |
[10] | ZHANG Ning, SHI Jinguang, WANG Zhongyuan, ZHAO Xinxin. Performance Prediction and Optimization of Ramjet for Projectiles Using Support Vector Regression Model [J]. Acta Armamentarii, 2023, 44(10): 2944-2953. |
[11] | YAN Jianhu, LI Biao, SHI Yan, ZHANG Lingyu, HENG Peiran. Multi-objective Stratified Optimization Design of Tubular Permanent Magnet Linear Motors with Nonuniform Teeth for Active Suspension [J]. Acta Armamentarii, 2023, 44(1): 40-50. |
[12] | ZHAO Zixi, JIANG Yi, JIA Qiming, NIU Yusen. Research on Interior Ballistics of Catapult using High-Pressure working medium [J]. Acta Armamentarii, 2022, 43(7): 1553-1564. |
[13] | CHEN Liang, LIU Rong-zhong, GUO Rui, ZHAO Bo-bo, LIU Lei, YANG Yong-liang. Multi-objective Optimization on Aerodynamic Shape of Projectile with Twisted Empennages [J]. Acta Armamentarii, 2016, 37(7): 1187-1193. |
[14] | XIA Wei, LIU Xin-xue, FAN Yang-tao, YUAN Feng-gang. Weapon-target Assignment with an Improved Multi-objective Particle Swarm Optimization Algorithm [J]. Acta Armamentarii, 2016, 37(11): 2085-2093. |
[15] | ZHANG Ying, YANG Ren-nong, ZUO Jia-liang, JING Xiao-ning, HE Gui-bo. Improved Decomposition-Based Evolutionary Algorithm for Multi-objective Optimization Model of Dynamic Weapon-targetAssignment [J]. Acta Armamentarii, 2015, 36(8): 1533-1540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||