Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (5): 1363-1373.doi: 10.12382/bgxb.2023.0049
Previous Articles Next Articles
WEI Jialin1,2, WANG Youlong1,2,3,*(), WEN Xuhui1,2,3, CHEN Chen1, LI Wenshan1
Received:
2023-02-02
Online:
2023-06-06
Contact:
WANG Youlong
CLC Number:
WEI Jialin, WANG Youlong, WEN Xuhui, CHEN Chen, LI Wenshan. Optimization Design of a 300kW High-speed Permanent Magnet Synchronous Machine for Aviation Aircraft[J]. Acta Armamentarii, 2024, 45(5): 1363-1373.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
额定功率/kW | 300 |
额定转速/(r·min-1) | 30000 |
额定电压/V | 380 |
相数 | 3 |
额定效率/% | ≥94 |
直流电压/V | 540 |
Table 1 Technical specifications of high-speed PMSM
参数 | 数值 |
---|---|
额定功率/kW | 300 |
额定转速/(r·min-1) | 30000 |
额定电压/V | 380 |
相数 | 3 |
额定效率/% | ≥94 |
直流电压/V | 540 |
类型 | 参数 | 数值范围 |
---|---|---|
定子外径Rs/mm | 230 | |
约束条件 | 轴向有效长度Le/mm | 140 |
齿部磁密/T | ≤1.5 | |
轭部磁密/T | ≤1.5 | |
优化变量 | 气隙磁密Bm/T | 0.40~0.85 |
裂比 | 0.40~0.75 |
Table 2 Optimization variables and constraints
类型 | 参数 | 数值范围 |
---|---|---|
定子外径Rs/mm | 230 | |
约束条件 | 轴向有效长度Le/mm | 140 |
齿部磁密/T | ≤1.5 | |
轭部磁密/T | ≤1.5 | |
优化变量 | 气隙磁密Bm/T | 0.40~0.85 |
裂比 | 0.40~0.75 |
方案 | 损耗/kW | 定子最高温度/℃ |
---|---|---|
X1(0.5,0.45T) | >8.00 | >200 |
X2(0.6,0.6T) | 6.25 | 156.7 |
X3(0.7,0.5T) | 7.45 | 174.8 |
X5(0.725,0.6T) | 7.91 | 186.6 |
X6(0.7,0.583T) | 7.34 | 183.4 |
X7(0.6,0.7T) | 6.09 | |
X8(0.575,0.75T) | 6.01 | |
X9(0.53,0.72T) | 5.84 | |
X10(0.575,0.67T) | 5.79 | |
X11(0.53,0.64T) | 5.76 | |
Y1(0.575,0.5T) | 6.28 | 165.5 |
Y2(0.475,0.6T) | 6.77 | 173.8 |
Y3(0.53,0.575T) | 6.23 | 162.7 |
Y4(0.555,0.675T) | 5.76 | 153.4 |
Xfinal(0.54,0.68T) | 5.80 | 154.1 |
Table 3 Loss and temperature of PMSM
方案 | 损耗/kW | 定子最高温度/℃ |
---|---|---|
X1(0.5,0.45T) | >8.00 | >200 |
X2(0.6,0.6T) | 6.25 | 156.7 |
X3(0.7,0.5T) | 7.45 | 174.8 |
X5(0.725,0.6T) | 7.91 | 186.6 |
X6(0.7,0.583T) | 7.34 | 183.4 |
X7(0.6,0.7T) | 6.09 | |
X8(0.575,0.75T) | 6.01 | |
X9(0.53,0.72T) | 5.84 | |
X10(0.575,0.67T) | 5.79 | |
X11(0.53,0.64T) | 5.76 | |
Y1(0.575,0.5T) | 6.28 | 165.5 |
Y2(0.475,0.6T) | 6.77 | 173.8 |
Y3(0.53,0.575T) | 6.23 | 162.7 |
Y4(0.555,0.675T) | 5.76 | 153.4 |
Xfinal(0.54,0.68T) | 5.80 | 154.1 |
变流器及其频率 | 轴向长度/mm | 涡流损耗/W |
---|---|---|
5 | 200.8 | |
两电平,10kHz | 10 | 378.9 |
15 | 457.4 | |
20 | 495.3 | |
5 | 156.8 | |
两电平,16kHz | 10 | 259.2 |
15 | 290.4 | |
20 | 303.6 | |
5 | 79.5 | |
三电平,10kHz | 10 | 139.6 |
15 | 162.7 | |
20 | 174.7 |
Table 4 Calculated results of eddy current losses in magnets
变流器及其频率 | 轴向长度/mm | 涡流损耗/W |
---|---|---|
5 | 200.8 | |
两电平,10kHz | 10 | 378.9 |
15 | 457.4 | |
20 | 495.3 | |
5 | 156.8 | |
两电平,16kHz | 10 | 259.2 |
15 | 290.4 | |
20 | 303.6 | |
5 | 79.5 | |
三电平,10kHz | 10 | 139.6 |
15 | 162.7 | |
20 | 174.7 |
参数 | 转速/(r·min-1) | |
---|---|---|
25000 | 30000 | |
转矩/(N·m) | 99.5 | 105.8 |
发电功率/kW | 253.0 | 321.0 |
相电流有效值/A | 505.0 | 550.0 |
负载功率/kW | 246.0 | 312.0 |
电机效率/% | 97.1 | 96.6 |
系统效率/% | 94.5 | 93.9 |
Table 5 Experimental results of the prototype
参数 | 转速/(r·min-1) | |
---|---|---|
25000 | 30000 | |
转矩/(N·m) | 99.5 | 105.8 |
发电功率/kW | 253.0 | 321.0 |
相电流有效值/A | 505.0 | 550.0 |
负载功率/kW | 246.0 | 312.0 |
电机效率/% | 97.1 | 96.6 |
系统效率/% | 94.5 | 93.9 |
[1] |
张卓然, 许彦武, 于立, 等. 多电飞机高压直流并联供电系统发展现状与关键技术[J]. 航空学报, 2021, 42(6):12-25.
|
|
|
[2] |
朱德明, 李进才, 韩建斌, 等. 起动发电机在中国大型客机上的应用[J]. 航空学报, 2019, 40(1): 250-258.
|
|
|
[3] |
江秀红, 李佳欣, 刘彦娟, 等. 含反馈环的电动飞机驱动系统可靠性分析方法[J]. 兵工学报, 2022, 43(2):451-457.
doi: 10.3969/j.issn.1000-1093.2022.02.023 |
doi: 10.3969/j.issn.1000-1093.2022.02.023 |
|
[4] |
李勇, 吴佳鑫, 马鹏程, 等. 飞行器用永磁电机系统的功率密度与需求展望[J]. 电机与控制学报, 2022, 26(2):1-9.
|
|
|
[5] |
|
[6] |
涂群章, 林加堃, 曾繁琦, 等. 永磁同步电机控制系统带过调制的弱磁控制策略研究[J]. 兵工学报, 2016, 37(5):953-960.
doi: 10.3969/j.issn.1000-1093.2016.05.025 |
|
|
[7] |
江善林. 高速永磁同步电机的损耗分析与温度场计算[D]. 哈尔滨: 哈尔滨工业大学, 2010.
|
|
|
[8] |
|
[9] |
张鹏军, 王自勇, 卢卫强, 等. 外能源转管机枪间歇制高功率密度永磁电机设计[J]. 兵工学报, 2022, 43(7):1498-1509.
doi: 10.12382/bgxb.2021.0378 |
doi: 10.12382/bgxb.2021.0378 |
|
[10] |
|
[11] |
戴睿, 张岳, 王惠军, 等. 基于多物理场近似模型的高速永磁电机多目标优化设计[J]. 电工技术学报, 2022, 37(7): 1618-1633.
|
|
|
[12] |
李玮, 汪泽润, 张凤阁, 等. 基于FEM/Kriging近似模型结合进化算法的表贴式高速永磁电机转子强度优化[J]. 电工技术学报, 2023, 38(4):936-944.
|
|
|
[13] |
谢冰川, 张岳, 徐振耀, 等. 基于代理模型的电机多学科优化关键技术综述[J]. 电工技术学报, 2022, 37(20):5117-5143.
|
|
|
[14] |
|
[15] |
|
[16] |
程军. 碳纤维复合材料的电磁涡流无损检测技术研究[D]. 南京: 南京航空航天大学, 2015.
|
|
|
[17] |
张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7):1-18.
|
|
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[1] | SUN Shiming, YU Wei, WANG Xiaohui, LI Zhenwang, LIU Cailian. Initial Kinematic Parameters Design of Trans-media Vehicle Skipping over Water Surface Based on Multi-objective Optimization [J]. Acta Armamentarii, 2024, 45(2): 541-551. |
[2] | FU Yaoyu, GUI Xincheng, ZHOU Yunbo, LIU Jiazhi, SHI Hao, WANG Zheng. Protection Performance Analysis and Optimization Design of Vehicle Roof Sandwich Plateunder Air Explosion Condition of Fragment Warhead [J]. Acta Armamentarii, 2024, 45(1): 69-84. |
[3] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[4] | DU Weiwei, CHEN Xiaowei. Task Assignment and Optimization Method of Tactical-Level Army Operations [J]. Acta Armamentarii, 2023, 44(5): 1431-1442. |
[5] | LI Jingfeng, CHEN Yunxiang, XIANG Huachun, GAO Yangjun, ZHAO Jing. Multi-Objective Spare Parts Scheduling Method in Wartime Considering Lateral Transshipment and Emergency Distribution [J]. Acta Armamentarii, 2023, 44(3): 816-830. |
[6] | ZHANG Ning, SHI Jinguang, WANG Zhongyuan, ZHAO Xinxin. Performance Prediction and Optimization of Ramjet for Projectiles Using Support Vector Regression Model [J]. Acta Armamentarii, 2023, 44(10): 2944-2953. |
[7] | YAN Jianhu, LI Biao, SHI Yan, ZHANG Lingyu, HENG Peiran. Multi-objective Stratified Optimization Design of Tubular Permanent Magnet Linear Motors with Nonuniform Teeth for Active Suspension [J]. Acta Armamentarii, 2023, 44(1): 40-50. |
[8] | ZHAO Zixi, JIANG Yi, JIA Qiming, NIU Yusen. Research on Interior Ballistics of Catapult using High-Pressure working medium [J]. Acta Armamentarii, 2022, 43(7): 1553-1564. |
[9] | CHEN Liang, LIU Rong-zhong, GUO Rui, ZHAO Bo-bo, LIU Lei, YANG Yong-liang. Multi-objective Optimization on Aerodynamic Shape of Projectile with Twisted Empennages [J]. Acta Armamentarii, 2016, 37(7): 1187-1193. |
[10] | XIA Wei, LIU Xin-xue, FAN Yang-tao, YUAN Feng-gang. Weapon-target Assignment with an Improved Multi-objective Particle Swarm Optimization Algorithm [J]. Acta Armamentarii, 2016, 37(11): 2085-2093. |
[11] | ZHANG Ying, YANG Ren-nong, ZUO Jia-liang, JING Xiao-ning, HE Gui-bo. Improved Decomposition-Based Evolutionary Algorithm for Multi-objective Optimization Model of Dynamic Weapon-targetAssignment [J]. Acta Armamentarii, 2015, 36(8): 1533-1540. |
[12] | WEI Ran, WANG Xian-hui, ZHOU Yun-bo, WANG Liang-mo, ZHENG Ya-li. Application of Pareto Optimality in Protective Structure Design of Vehicle Underbody [J]. Acta Armamentarii, 2015, 36(6): 1061-1066. |
[13] | ZHOU Le, YANG Guo-lai, GE Jian-li, WANG Fei. Structural Multi-objective Optimization of Artillery Recoil Mechanism Based on Genetic Algorithm [J]. Acta Armamentarii, 2015, 36(3): 433-436. |
[14] | DONG Hua-chao, SONG Bao-wei, WANG Peng. Multi-objective Optimal Design of Automatic Underwater Vehicle Shell Structure [J]. Acta Armamentarii, 2014, 35(3): 392-397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||