Acta Armamentarii ›› 2023, Vol. 44 ›› Issue (1): 40-50.doi: 10.12382/bgxb.2022.0756
Special Issue: 特种车辆理论与技术
Previous Articles Next Articles
YAN Jianhu1, LI Biao1, SHI Yan2,*(), ZHANG Lingyu2, HENG Peiran1
Received:
2022-08-30
Online:
2022-12-21
Contact:
SHI Yan
CLC Number:
YAN Jianhu, LI Biao, SHI Yan, ZHANG Lingyu, HENG Peiran. Multi-objective Stratified Optimization Design of Tubular Permanent Magnet Linear Motors with Nonuniform Teeth for Active Suspension[J]. Acta Armamentarii, 2023, 44(1): 40-50.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
额定电磁推力/N | 220 |
最大电磁推力/N | 650 |
最大行程/mm | ±20 |
最大安装长度/mm | 150 |
最大直径/mm | 80 |
Table 1 Design objectives of TPLM
参数 | 数值 |
---|---|
额定电磁推力/N | 220 |
最大电磁推力/N | 650 |
最大行程/mm | ±20 |
最大安装长度/mm | 150 |
最大直径/mm | 80 |
电机参数 | 数值 | 电机参数 | 数值 |
---|---|---|---|
极对数p | 5 | 气隙直径Dδ/mm | 40 |
极距τp/mm | 10 | 初级轭高Hy/mm | 3 |
气隙δ/mm | 1 | 内部齿长Lt/mm | 2.9 |
绕组匝数N | 56 | 永磁体长Lm/mm | 5 |
频率f/Hz | 60 | 永磁体高Hm/mm | 3.5 |
初级长度Lp/mm | 100 | 边端齿高Hb/mm | 18 |
次级长度Ls/mm | 140 | 边端齿长Lb/mm | 2.9 |
Table 2 Main parameters of the preliminary design model
电机参数 | 数值 | 电机参数 | 数值 |
---|---|---|---|
极对数p | 5 | 气隙直径Dδ/mm | 40 |
极距τp/mm | 10 | 初级轭高Hy/mm | 3 |
气隙δ/mm | 1 | 内部齿长Lt/mm | 2.9 |
绕组匝数N | 56 | 永磁体长Lm/mm | 5 |
频率f/Hz | 60 | 永磁体高Hm/mm | 3.5 |
初级长度Lp/mm | 100 | 边端齿高Hb/mm | 18 |
次级长度Ls/mm | 140 | 边端齿长Lb/mm | 2.9 |
参数 | 取值范围/ mm | 水平 | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Lt | 2.9~3.2 | 2.9 | 3.0 | 3.1 | 3.2 |
Lb | 2.8~3.4 | 2.8 | 3.0 | 3.2 | 3.4 |
He | 1.0~4.0 | 1.0 | 2.0 | 3.0 | 4.0 |
Hm | 3.0~6.0 | 3.0 | 4.0 | 5.0 | 6.0 |
Lm | 5.5~7.0 | 5.5 | 6.0 | 6.5 | 7.0 |
Table 3 Parameters and levels of Taguchi method
参数 | 取值范围/ mm | 水平 | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Lt | 2.9~3.2 | 2.9 | 3.0 | 3.1 | 3.2 |
Lb | 2.8~3.4 | 2.8 | 3.0 | 3.2 | 3.4 |
He | 1.0~4.0 | 1.0 | 2.0 | 3.0 | 4.0 |
Hm | 3.0~6.0 | 3.0 | 4.0 | 5.0 | 6.0 |
Lm | 5.5~7.0 | 5.5 | 6.0 | 6.5 | 7.0 |
实验编号 | Lt | Lb | He | Hm | Lm | R1/N | R2/% |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 585.4 | 7.58 |
2 | 1 | 2 | 2 | 2 | 2 | 649.5 | 5.93 |
3 | 1 | 3 | 3 | 3 | 3 | 682.4 | 6.83 |
4 | 1 | 4 | 4 | 4 | 4 | 694.2 | 10.43 |
5 | 2 | 1 | 2 | 3 | 4 | 687.1 | 6.67 |
6 | 2 | 2 | 1 | 4 | 3 | 711.0 | 6.37 |
7 | 2 | 3 | 4 | 1 | 2 | 603.0 | 6.38 |
8 | 2 | 4 | 3 | 2 | 1 | 652.7 | 5.38 |
9 | 3 | 1 | 3 | 4 | 2 | 725.7 | 8.89 |
10 | 3 | 2 | 4 | 3 | 1 | 698.9 | 9.72 |
11 | 3 | 3 | 1 | 2 | 4 | 666.3 | 7.16 |
12 | 3 | 4 | 2 | 1 | 3 | 617.6 | 3.82 |
13 | 4 | 1 | 4 | 2 | 3 | 676.0 | 8.80 |
14 | 4 | 2 | 3 | 1 | 4 | 627.8 | 5.32 |
15 | 4 | 3 | 2 | 4 | 1 | 735.8 | 5.71 |
16 | 4 | 4 | 1 | 3 | 2 | 710.2 | 7.39 |
Table 4 Taguchi experiments and results
实验编号 | Lt | Lb | He | Hm | Lm | R1/N | R2/% |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 585.4 | 7.58 |
2 | 1 | 2 | 2 | 2 | 2 | 649.5 | 5.93 |
3 | 1 | 3 | 3 | 3 | 3 | 682.4 | 6.83 |
4 | 1 | 4 | 4 | 4 | 4 | 694.2 | 10.43 |
5 | 2 | 1 | 2 | 3 | 4 | 687.1 | 6.67 |
6 | 2 | 2 | 1 | 4 | 3 | 711.0 | 6.37 |
7 | 2 | 3 | 4 | 1 | 2 | 603.0 | 6.38 |
8 | 2 | 4 | 3 | 2 | 1 | 652.7 | 5.38 |
9 | 3 | 1 | 3 | 4 | 2 | 725.7 | 8.89 |
10 | 3 | 2 | 4 | 3 | 1 | 698.9 | 9.72 |
11 | 3 | 3 | 1 | 2 | 4 | 666.3 | 7.16 |
12 | 3 | 4 | 2 | 1 | 3 | 617.6 | 3.82 |
13 | 4 | 1 | 4 | 2 | 3 | 676.0 | 8.80 |
14 | 4 | 2 | 3 | 1 | 4 | 627.8 | 5.32 |
15 | 4 | 3 | 2 | 4 | 1 | 735.8 | 5.71 |
16 | 4 | 4 | 1 | 3 | 2 | 710.2 | 7.39 |
优化目标 | Lt | Lb | He | Hm | Lm | |
---|---|---|---|---|---|---|
R1 | 方差 | 2764.9 | 41.6 | 70.9 | 26612.6 | 47.3 |
方差比重/% | 9.36 | 0.14 | 0.24 | 90.10 | 0.16 | |
R2 | 方差 | 12.5 | 12.4 | 30.0 | 17.9 | 9.2 |
方差比重/% | 15.24 | 15.12 | 36.59 | 21.86 | 11.19 |
Table 5 Experimental results using Taguchi method
优化目标 | Lt | Lb | He | Hm | Lm | |
---|---|---|---|---|---|---|
R1 | 方差 | 2764.9 | 41.6 | 70.9 | 26612.6 | 47.3 |
方差比重/% | 9.36 | 0.14 | 0.24 | 90.10 | 0.16 | |
R2 | 方差 | 12.5 | 12.4 | 30.0 | 17.9 | 9.2 |
方差比重/% | 15.24 | 15.12 | 36.59 | 21.86 | 11.19 |
参数 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
Lt | 2.9 | 3.0 | 3.1 |
Lb | 3.0 | 3.2 | 3.4 |
He | 1.0 | 2.0 | 3.0 |
Hm | 3.0 | 4.0 | 5.0 |
Lm | 6.0 | 6.5 | 7.0 |
Table 6 Parameters and levels of RSM
参数 | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
Lt | 2.9 | 3.0 | 3.1 |
Lb | 3.0 | 3.2 | 3.4 |
He | 1.0 | 2.0 | 3.0 |
Hm | 3.0 | 4.0 | 5.0 |
Lm | 6.0 | 6.5 | 7.0 |
实验编号 | Lt/mm | Lb/mm | He/mm | Hm/mm | Lm/mm | Fe/N | Fa/% |
---|---|---|---|---|---|---|---|
1 | -1 | -1 | 0 | 0 | 0 | 651.95 | 5.22 |
2 | 1 | -1 | 0 | 0 | 0 | 668.96 | 5.13 |
3 | -1 | 1 | 0 | 0 | 0 | 651.95 | 5.07 |
4 | 1 | 1 | 0 | 0 | 0 | 669.05 | 4.72 |
5 | 0 | 0 | -1 | -1 | 0 | 609.28 | 4.52 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
38 | 0 | 1 | 0 | -1 | 0 | 610.63 | 3.89 |
39 | 0 | -1 | 0 | 1 | 0 | 691.93 | 5.90 |
40 | 0 | 1 | 0 | 1 | 0 | 692.05 | 5.45 |
41 | 0 | 0 | 0 | 0 | 0 | 660.76 | 4.59 |
Table 7 RSM experiments and results
实验编号 | Lt/mm | Lb/mm | He/mm | Hm/mm | Lm/mm | Fe/N | Fa/% |
---|---|---|---|---|---|---|---|
1 | -1 | -1 | 0 | 0 | 0 | 651.95 | 5.22 |
2 | 1 | -1 | 0 | 0 | 0 | 668.96 | 5.13 |
3 | -1 | 1 | 0 | 0 | 0 | 651.95 | 5.07 |
4 | 1 | 1 | 0 | 0 | 0 | 669.05 | 4.72 |
5 | 0 | 0 | -1 | -1 | 0 | 609.28 | 4.52 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
38 | 0 | 1 | 0 | -1 | 0 | 610.63 | 3.89 |
39 | 0 | -1 | 0 | 1 | 0 | 691.93 | 5.90 |
40 | 0 | 1 | 0 | 1 | 0 | 692.05 | 5.45 |
41 | 0 | 0 | 0 | 0 | 0 | 660.76 | 4.59 |
参数 | 初始值/mm | 优化值/mm |
---|---|---|
Lt | 2.9 | 3.1 |
Lb | 2.9 | 3.3 |
He | 0 | 2.0 |
Hm | 3.5 | 4.2 |
Lm | 5.0 | 6.4 |
Table 8 Comparison of parameters before and after optimization
参数 | 初始值/mm | 优化值/mm |
---|---|---|
Lt | 2.9 | 3.1 |
Lb | 2.9 | 3.3 |
He | 0 | 2.0 |
Hm | 3.5 | 4.2 |
Lm | 5.0 | 6.4 |
[1] |
王国丽, 顾亮, 孙逢春. 车辆主动悬架技术的现状和发展趋势[J]. 兵工学报, 2000, 21(增刊1): 80 -83.
|
|
|
[2] |
喻凡, 张勇超, 张国光. 车辆电磁悬架技术综述[J]. 汽车工程, 2012, 34(7): 569-574.
|
|
|
[3] |
过学迅, 彭明, 邹俊逸, 等. 商用车悬架馈能潜力影响因素研究[J]. 中国公路学报, 2016, 29(5): 151-158.
|
|
|
[4] |
庞辉, 陈嘉楠, 刘凯. 汽车磁流变半主动悬架系统自适应反推跟踪控制[J]. 兵工学报, 2017, 38(7): 1430-1442.
doi: 10.3969/j.issn.1000-1093.2017.07.023 |
doi: 10.3969/j.issn.1000-1093.2017.07.023 |
|
[5] |
王会义, 于良耀, 宋健. 汽车主动安全控制液压执行器的性能与原理[J]. 机械工程学报, 2007, 43(9): 21-27.
|
|
|
[6] |
邓兆祥, 来飞. 车辆主动悬架用电磁直线作动器的研究[J]. 机械工程学报, 2011, 47(14): 121-128.
|
|
|
[7] |
毛明, 王乐, 陈轶杰, 等. 惯容器及惯容器-弹簧-阻尼器悬架研究进展[J]. 兵工学报, 2016, 37(3): 525-534.
doi: 10.3969/j.issn.1000-1093.2016.03.019 |
doi: 10.3969/j.issn.1000-1093.2016.03.019 |
|
[8] |
曹民, 刘为, 喻凡. 车辆主动悬架用电机作动器的研制[J]. 机械工程学报, 2008, 44(11): 224-228.
|
|
|
[9] |
doi: 10.1109/TVT.2011.2131160 URL |
[10] |
|
[11] |
doi: 10.1109/TIA.2009.2027097 URL |
[12] |
|
[13] |
孙晓东, 蔡峰, 蔡英凤, 等. 主动悬架用直线电机模型预测推力控制[J]. 中国公路学报, 2021, 34(9): 85-100.
doi: 10.19721/j.cnki.1001-7372.2021.09.007 |
|
|
[14] |
汪若尘, 戴煜, 丁仁凯, 等. 混合电磁悬架作动器设计与试验[J]. 农业机械学报, 2019, 50(5): 385-393.
|
|
|
[15] |
秦武, 上官文斌, 吕辉. 非线性二自由度主动悬架滑模控制方法的研究[J]. 机械工程学报, 2020, 56(1): 58-68.
doi: 10.3901/JME.2020.01.058 |
doi: 10.3901/JME.2020.01.058 |
|
[16] |
余曼, 周辰雨, 魏朗, 等. 基于T-S模糊模型的车辆电液悬架系统H_∞控制[J]. 中国公路学报, 2018, 31(8): 205-217.
|
|
|
[17] |
韩雪岩, 祁坤, 张哲, 等. 永磁同步直线电机磁阻力分析及抑制措施[J]. 电工技术学报, 2015, 30(6): 70-76.
|
|
|
[18] |
卢琴芬, 沈燚明, 叶云岳. 永磁直线电动机结构及研究发展综述[J]. 中国电机工程学报, 2019, 39(9): 2575-2588.
|
|
|
[19] |
彭兵, 张囡, 夏加宽, 等. 永磁直线电机端部效应力的解析计算[J]. 中国电机工程学报, 2016, 36(2): 547-553.
|
|
|
[20] |
|
[21] |
doi: 10.1109/TIE.2017.2740851 URL |
[22] |
张鲁, 寇宝泉, 赵斌超, 等. 新型Halbach次级结构永磁同步直线电机[J]. 电工技术学报, 2013, 28(7): 39-45.
|
|
[1] | SUN Shiming, YU Wei, WANG Xiaohui, LI Zhenwang, LIU Cailian. Initial Kinematic Parameters Design of Trans-media Vehicle Skipping over Water Surface Based on Multi-objective Optimization [J]. Acta Armamentarii, 2024, 45(2): 541-551. |
[2] | FU Yaoyu, GUI Xincheng, ZHOU Yunbo, LIU Jiazhi, SHI Hao, WANG Zheng. Protection Performance Analysis and Optimization Design of Vehicle Roof Sandwich Plateunder Air Explosion Condition of Fragment Warhead [J]. Acta Armamentarii, 2024, 45(1): 69-84. |
[3] | ZHANG An, XU Shuangfei, BI Wenhao, XU Han. Weapon-target Assignment and Guidance Sequence Optimization in Air-to-Ground Multi-target Attack [J]. Acta Armamentarii, 2023, 44(8): 2233-2244. |
[4] | DU Weiwei, CHEN Xiaowei. Task Assignment and Optimization Method of Tactical-Level Army Operations [J]. Acta Armamentarii, 2023, 44(5): 1431-1442. |
[5] | LI Jingfeng, CHEN Yunxiang, XIANG Huachun, GAO Yangjun, ZHAO Jing. Multi-Objective Spare Parts Scheduling Method in Wartime Considering Lateral Transshipment and Emergency Distribution [J]. Acta Armamentarii, 2023, 44(3): 816-830. |
[6] | ZHANG Ning, SHI Jinguang, WANG Zhongyuan, ZHAO Xinxin. Performance Prediction and Optimization of Ramjet for Projectiles Using Support Vector Regression Model [J]. Acta Armamentarii, 2023, 44(10): 2944-2953. |
[7] | ZHANG Cong, LIU Shuang, JIANG Siyuan, LIU Shiji. Driving Leveling Control Method with Multi-Actuator Cooperation for Special Vehicles [J]. Acta Armamentarii, 2023, 44(1): 98-107. |
[8] | ZHAO Zixi, JIANG Yi, JIA Qiming, NIU Yusen. Research on Interior Ballistics of Catapult using High-Pressure working medium [J]. Acta Armamentarii, 2022, 43(7): 1553-1564. |
[9] | CHEN Liang, LIU Rong-zhong, GUO Rui, ZHAO Bo-bo, LIU Lei, YANG Yong-liang. Multi-objective Optimization on Aerodynamic Shape of Projectile with Twisted Empennages [J]. Acta Armamentarii, 2016, 37(7): 1187-1193. |
[10] | XIA Wei, LIU Xin-xue, FAN Yang-tao, YUAN Feng-gang. Weapon-target Assignment with an Improved Multi-objective Particle Swarm Optimization Algorithm [J]. Acta Armamentarii, 2016, 37(11): 2085-2093. |
[11] | PANG Hui, CHEN Jia-nan, LIANG Jun, CHEN Ying. Backstepping Controller Design for Nonlinear Active Vehicle Suspension Based on Model Reference Control [J]. Acta Armamentarii, 2016, 37(10): 1761-1769. |
[12] | ZHANG Ying, YANG Ren-nong, ZUO Jia-liang, JING Xiao-ning, HE Gui-bo. Improved Decomposition-Based Evolutionary Algorithm for Multi-objective Optimization Model of Dynamic Weapon-targetAssignment [J]. Acta Armamentarii, 2015, 36(8): 1533-1540. |
[13] | WEI Ran, WANG Xian-hui, ZHOU Yun-bo, WANG Liang-mo, ZHENG Ya-li. Application of Pareto Optimality in Protective Structure Design of Vehicle Underbody [J]. Acta Armamentarii, 2015, 36(6): 1061-1066. |
[14] | ZHOU Le, YANG Guo-lai, GE Jian-li, WANG Fei. Structural Multi-objective Optimization of Artillery Recoil Mechanism Based on Genetic Algorithm [J]. Acta Armamentarii, 2015, 36(3): 433-436. |
[15] | DONG Hua-chao, SONG Bao-wei, WANG Peng. Multi-objective Optimal Design of Automatic Underwater Vehicle Shell Structure [J]. Acta Armamentarii, 2014, 35(3): 392-397. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||