Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (7): 2197-2208.doi: 10.12382/bgxb.2023.0127
Previous Articles Next Articles
JI Wen1,2, LI Chunna1,2,*(), JIA Xuyi1,2, WANG Gang3, GONG Chunlin1,2
Received:
2023-02-26
Online:
2023-07-13
Contact:
LI Chunna
CLC Number:
JI Wen, LI Chunna, JIA Xuyi, WANG Gang, GONG Chunlin. A High-spinning Projectile Aerodynamic Modeling Method Combining System Identification and Transfer Learning[J]. Acta Armamentarii, 2024, 45(7): 2197-2208.
Add to citation manager EndNote|Ris|BibTeX
方向 | 位置/m | 速度/ (m·s-1) | 姿态角/ (°) | 角速度/ (rad·s-1) |
---|---|---|---|---|
x | 4.593 | 1030.81 | 0 | 2518.39 |
y | -0.2 | 22.064 | 5 | -52.802 |
z | -0.159 | 86.278 | 1.317 | 22.233 |
Table 1 Initial conditions of coupled CFD/RBD simulation
方向 | 位置/m | 速度/ (m·s-1) | 姿态角/ (°) | 角速度/ (rad·s-1) |
---|---|---|---|---|
x | 4.593 | 1030.81 | 0 | 2518.39 |
y | -0.2 | 22.064 | 5 | -52.802 |
z | -0.159 | 86.278 | 1.317 | 22.233 |
初始转速/ (rad·s-1) | 误差 | 力 | 力矩 | ||||
---|---|---|---|---|---|---|---|
Fx | Fy | Fz | Mx | My | Mz | ||
2518.39 | δRMSE | 0.0271 | 0.0357 | 0.0325 | 0.0003 | 0.0009 | 0.0009 |
δMAPE | 0.09% | 3.35% | 0.5% | 2.15% | 0.95% | 3.45% | |
2100 | δRMSE | 0.0413 | 0.0438 | 0.0453 | 0.0004 | 0.0012 | 0.0014 |
δMAPE | 0.14% | 4.59% | 0.52% | 3.22% | 0.53% | 4.49% | |
2 900 | δRMSE | 0.0471 | 0.0583 | 0.0596 | 0.0006 | 0.0014 | 0.0016 |
δMAPE | 0.17% | 6.82% | 0.68% | 4.88% | 0.62% | 1.95% | |
2 000 | δRMSE | 0.0352 | 0.0402 | 0.0379 | 0.0004 | 0.001 | 0.0013 |
δMAPE | 0.12% | 10.29% | 0.86% | 7.78% | 1.49% | 11.58% | |
3 000 | δRMSE | 0.0258 | 0.0463 | 0.0422 | 0.0004 | 0.0011 | 0.0011 |
δMAPE | 0.09% | 11.11% | 1.45% | 6.27% | 1.07% | 10.16% | |
1 800 | δRMSE | 0.0331 | 0.0514 | 0.0494 | 0.0003 | 0.0013 | 0.0017 |
δMAPE | 0.11% | 21.31% | 1.24% | 2.97% | 0.89% | 21.98% |
Table 2 Modeling errors of NCarma at different initial angular velocities
初始转速/ (rad·s-1) | 误差 | 力 | 力矩 | ||||
---|---|---|---|---|---|---|---|
Fx | Fy | Fz | Mx | My | Mz | ||
2518.39 | δRMSE | 0.0271 | 0.0357 | 0.0325 | 0.0003 | 0.0009 | 0.0009 |
δMAPE | 0.09% | 3.35% | 0.5% | 2.15% | 0.95% | 3.45% | |
2100 | δRMSE | 0.0413 | 0.0438 | 0.0453 | 0.0004 | 0.0012 | 0.0014 |
δMAPE | 0.14% | 4.59% | 0.52% | 3.22% | 0.53% | 4.49% | |
2 900 | δRMSE | 0.0471 | 0.0583 | 0.0596 | 0.0006 | 0.0014 | 0.0016 |
δMAPE | 0.17% | 6.82% | 0.68% | 4.88% | 0.62% | 1.95% | |
2 000 | δRMSE | 0.0352 | 0.0402 | 0.0379 | 0.0004 | 0.001 | 0.0013 |
δMAPE | 0.12% | 10.29% | 0.86% | 7.78% | 1.49% | 11.58% | |
3 000 | δRMSE | 0.0258 | 0.0463 | 0.0422 | 0.0004 | 0.0011 | 0.0011 |
δMAPE | 0.09% | 11.11% | 1.45% | 6.27% | 1.07% | 10.16% | |
1 800 | δRMSE | 0.0331 | 0.0514 | 0.0494 | 0.0003 | 0.0013 | 0.0017 |
δMAPE | 0.11% | 21.31% | 1.24% | 2.97% | 0.89% | 21.98% |
初始俯仰 角/(°) | 误差 | 力 | 力矩 | ||||
---|---|---|---|---|---|---|---|
Fx | Fy | Fz | Mx | My | Mz | ||
5 | δRMSE | 0.0271 | 0.0357 | 0.0325 | 0.0003 | 0.0009 | 0.0009 |
δMAPE | 0.09% | 3.35% | 0.5% | 2.15% | 0.95% | 3.45% | |
4 | δRMSE | 0.0414 | 0.0557 | 0.0534 | 0.0005 | 0.0013 | 0.0013 |
δMAPE | 0.15% | 1.82% | 0.68% | 4.48% | 0.41% | 1.73% | |
6 | δRMSE | 0.0814 | 0.0676 | 0.0761 | 0.0009 | 0.0016 | 0.0015 |
δMAPE | 0.31% | 4.65% | 1.01% | 5.64% | 0.27% | 1.18% | |
2 | δRMSE | 0.0807 | 0.1041 | 0.3602 | 0.0009 | 0.0163 | 0.0029 |
δMAPE | 0.29% | 1.97% | 5.96% | 17.70% | 8.47% | 1.79% | |
3 | δRMSE | 0.0779 | 0.099 | 0.3412 | 0.0008 | 0.0159 | 0.0027 |
δMAPE | 0.28% | 2.71% | 16.97% | 19.90% | 10.63% | 2.58% | |
7 | δRMSE | 0.1242 | 0.0800 | 0.1503 | 0.0023 | 0.0030 | 0.0016 |
δMAPE | 0.43% | 9.23% | 0.74% | 8.72% | 1.66% | 1.71% |
Table 3 Modeling errors of NCarma at different initial pitch angles
初始俯仰 角/(°) | 误差 | 力 | 力矩 | ||||
---|---|---|---|---|---|---|---|
Fx | Fy | Fz | Mx | My | Mz | ||
5 | δRMSE | 0.0271 | 0.0357 | 0.0325 | 0.0003 | 0.0009 | 0.0009 |
δMAPE | 0.09% | 3.35% | 0.5% | 2.15% | 0.95% | 3.45% | |
4 | δRMSE | 0.0414 | 0.0557 | 0.0534 | 0.0005 | 0.0013 | 0.0013 |
δMAPE | 0.15% | 1.82% | 0.68% | 4.48% | 0.41% | 1.73% | |
6 | δRMSE | 0.0814 | 0.0676 | 0.0761 | 0.0009 | 0.0016 | 0.0015 |
δMAPE | 0.31% | 4.65% | 1.01% | 5.64% | 0.27% | 1.18% | |
2 | δRMSE | 0.0807 | 0.1041 | 0.3602 | 0.0009 | 0.0163 | 0.0029 |
δMAPE | 0.29% | 1.97% | 5.96% | 17.70% | 8.47% | 1.79% | |
3 | δRMSE | 0.0779 | 0.099 | 0.3412 | 0.0008 | 0.0159 | 0.0027 |
δMAPE | 0.28% | 2.71% | 16.97% | 19.90% | 10.63% | 2.58% | |
7 | δRMSE | 0.1242 | 0.0800 | 0.1503 | 0.0023 | 0.0030 | 0.0016 |
δMAPE | 0.43% | 9.23% | 0.74% | 8.72% | 1.66% | 1.71% |
方法 | 误差 | 力 | 力矩 | ||||
---|---|---|---|---|---|---|---|
Fx | Fy | Fz | Mx | My | Mz | ||
TL-ARMA | δRMSE | 0.01 | 0.011 | 0.0466 | 0.0002 | 0.0019 | 0.0004 |
δMAPE | 0.03% | 5.74% | 0.96% | 1.53% | 1.09% | 4.78% | |
ARMA | δRMSE | 0.0193 | 0.0156 | 0.022 | 0.0004 | 0.0007 | 0.0006 |
δMAPE | 0.06% | 6.47% | 0.54% | 4.66% | 0.44% | 5.42% | |
δRMSE | 0.0331 | 0.0514 | 0.0494 | 0.0003 | 0.0013 | 0.0017 | |
δMAPE | 0.11% | 21.31% | 1.24% | 2.97% | 0.89% | 21.98% |
Table 4 Comparison of model errors corresponding to different methodsat theinitial of 1800rad/s
方法 | 误差 | 力 | 力矩 | ||||
---|---|---|---|---|---|---|---|
Fx | Fy | Fz | Mx | My | Mz | ||
TL-ARMA | δRMSE | 0.01 | 0.011 | 0.0466 | 0.0002 | 0.0019 | 0.0004 |
δMAPE | 0.03% | 5.74% | 0.96% | 1.53% | 1.09% | 4.78% | |
ARMA | δRMSE | 0.0193 | 0.0156 | 0.022 | 0.0004 | 0.0007 | 0.0006 |
δMAPE | 0.06% | 6.47% | 0.54% | 4.66% | 0.44% | 5.42% | |
δRMSE | 0.0331 | 0.0514 | 0.0494 | 0.0003 | 0.0013 | 0.0017 | |
δMAPE | 0.11% | 21.31% | 1.24% | 2.97% | 0.89% | 21.98% |
方法 | 样本计算时间 | 建模时间 | 总时间 |
---|---|---|---|
TL-ARMA | 3h56min | 10min23s | 约4h6min |
ARMA | 9h51min | 9h51min |
Table 5 Comparison of modeling times for different methods
方法 | 样本计算时间 | 建模时间 | 总时间 |
---|---|---|---|
TL-ARMA | 3h56min | 10min23s | 约4h6min |
ARMA | 9h51min | 9h51min |
方法 | 误差 | 力 | 力矩 | ||||
---|---|---|---|---|---|---|---|
Fx | Fy | Fz | Mx | My | Mz | ||
TL-ARMA | δRMSE | 0.0162 | 0.0166 | 0.0211 | 0.0002 | 0.001 | 0.0008 |
δMAPE | 0.05% | 0.44% | 0.23% | 7.29% | 0.25% | 0.61% | |
ARMA | δRMSE | 0.0232 | 0.0253 | 0.0727 | 0.0004 | 0.0025 | 0.0007 |
δMAPE | 0.08% | 0.57% | 0.96% | 8.69% | 0.63% | 0.53% | |
δRMSE | 0.0807 | 0.1041 | 0.3602 | 0.0009 | 0.0163 | 0.0029 | |
δMAPE | 0.29% | 1.97% | 5.96% | 17.70% | 8.47% | 1.79% |
Table 6 Comparison of model errors corresponding to different methodsat the initial θ of 2°
方法 | 误差 | 力 | 力矩 | ||||
---|---|---|---|---|---|---|---|
Fx | Fy | Fz | Mx | My | Mz | ||
TL-ARMA | δRMSE | 0.0162 | 0.0166 | 0.0211 | 0.0002 | 0.001 | 0.0008 |
δMAPE | 0.05% | 0.44% | 0.23% | 7.29% | 0.25% | 0.61% | |
ARMA | δRMSE | 0.0232 | 0.0253 | 0.0727 | 0.0004 | 0.0025 | 0.0007 |
δMAPE | 0.08% | 0.57% | 0.96% | 8.69% | 0.63% | 0.53% | |
δRMSE | 0.0807 | 0.1041 | 0.3602 | 0.0009 | 0.0163 | 0.0029 | |
δMAPE | 0.29% | 1.97% | 5.96% | 17.70% | 8.47% | 1.79% |
方法 | 样本计算时间 | 建模时间 | 总时间 |
---|---|---|---|
TL-ARMA | 4h50min | 13min37s | 约5h3min |
ARMA | 9h40min | 9h40min |
Table 7 Comparison of modeling times for different methods
方法 | 样本计算时间 | 建模时间 | 总时间 |
---|---|---|---|
TL-ARMA | 4h50min | 13min37s | 约5h3min |
ARMA | 9h40min | 9h40min |
[1] |
苗瑞生, 吴甲生. 旋转弹空气动力学[J]. 力学进展, 1987, 17(4): 992-1000.
|
|
|
[2] |
|
[3] |
|
[4] |
钟阳, 王良明, 吴映锋. 基于计算流体力学与刚体动力学耦合的高速旋转弹丸弹道计算方法[J]. 兵工学报, 2020, 41(6):1085-1095.
doi: 10.3969/j.issn.1000-1093.2020.06.005 |
doi: 10.3969/j.issn.1000-1093.2020.06.005 |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
程杰, 于纪言, 王晓鸣, 等. 隔转鸭舵式弹道修正弹气动力工程模型与辨识[J]. 兵工学报, 2014, 35(10):1542-1548.
doi: 10.3969/j.issn.1000-1093.2014.10.004 |
doi: 10.3969/j.issn.1000-1093.2014.10.004 |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
doi: 10.2514/1.J057229 pmid: 31534261 |
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
王刚, 邢宇, 朱亚楠. 旋转弹气动力建模与飞行轨迹仿真[J]. 航空学报, 2017, 38(1):108-117.
|
|
|
[27] |
|
[28] |
|
[29] |
王刚, 叶正寅. 三维非结构混合网格生成与N-S方程求解[J]. 航空学报, 2003, 24(5):385-390.
|
|
|
[30] |
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[31] |
|
[32] |
杨春伟, 刘炳琪, 王继平, 等. 基于注意力机制的高超声速飞行器LSTM智能轨迹预测[J]. 兵工学报, 2022, 43(增刊2):78-86.
|
|
|
[33] |
|
[34] |
王晋东, 陈益强. 迁移学习导论[M]. 北京: 电子工业出版社, 2021:45-48.
|
|
[1] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
[2] | LIU Yi, REN Jihuan, WU Xiang, BO Yuming. Newly Equipped Armored Vehicle Classification Based on Integrated Transfer Learning [J]. Acta Armamentarii, 2023, 44(8): 2319-2328. |
[3] | REN Jihuan, WU Xiang, BO Yuming, WU Panlong, HE Shan. Ballistic Trajectory Prediction Based on Context-enhanced Long Short-Term Memory Network [J]. Acta Armamentarii, 2023, 44(2): 462-471. |
[4] | HUANG Wenkuan, QIAN Linfang, YIN Qiang, LIU Taisu. Fault Diagnosis Method of Modular Charge Feeding Mechanism Based on Transfer Learning [J]. Acta Armamentarii, 2023, 44(10): 2964-2974. |
[5] | PANG Yiqiong, XU Hua, ZHANG Yue, ZHU Huali, PENG Xiang. Modulation Recognition Algorithm Based on Transfer Meta-Learning [J]. Acta Armamentarii, 2023, 44(10): 2954-2963. |
[6] | DING Wei, MING Zhenjun, WANG Guoxin, YAN Yan. Dynamic Prediction Model Based on Multi-level LSTM Network for Multi-agent Attack and Defense Effectiveness [J]. Acta Armamentarii, 2023, 44(1): 176-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||