欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2014, Vol. 35 ›› Issue (2): 188-193.doi: 10.3969/j.issn.1000-1093.2014.02.008

• 论文 • 上一篇    下一篇

基于粒子群神经网络的黑索今基混合炸药大隔板试验冲击波感度预测

袁俊明, 刘玉存, 王建华, 常双君, 于雁武   

  1. (中北大学 化工与环境学院, 山西 太原 030051)
  • 收稿日期:2013-03-22 修回日期:2013-03-22 上线日期:2014-03-25
  • 作者简介:袁俊明(1979—),男,副教授
  • 基金资助:
    火炸药国防基础创新项目(20090371)

Prediction of Shock Sensitivity of RDX-based Composite Explosive by Particle Swarm Neural Network in Large-scale Gap Test

YUAN Jun-ming, LIU Yu-cun, WANG Jian-hua, CHANG Shuang-jun, YU Yan-wu   

  1. (School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, Shanxi, China)
  • Received:2013-03-22 Revised:2013-03-22 Online:2014-03-25

摘要: 应用粒子群神经网络模型对黑索今(RDX)基混合炸药冲击波感度的大隔板厚度值进行预测以减少试验量,节约试验成本。选取具有不同密度、空隙率、装药方式、RDX含量等特征的41组 RDX基混合炸药,考察炸药实际密度、空隙率、RDX和附加物含量影响因素,通过分析它们与大隔板厚度值的非线性关系,建立大隔板厚度值与上述4个变量之间的粒子群算法优化神经网络模型,采用100进化次数,40种群规模进行计算。计算与试验结果表明:4个变量与大隔板厚度值之间的映射模型良好;模型预测值与试验值吻合良好,相对误差在10%以内。该粒子群神经网络模型预测值对RDX基混合炸药大隔板试验具有一定参考价值。

关键词: 兵器科学与技术, 混合炸药, 冲击波感度, 大隔板试验, 神经网络

Abstract: The large-scale gap thickness value of RDX-based composite explosive shock sensitivity is predicted by particle swarm neural network for reducing the number of tests and saving the test cost. 41 groups of RDX-based composite explosives with different densities, void ratios, charge structures and RDX contents are selected for test. The practical density of explosive, void ratio, RDX and additives content are taken into account as main influence factors. The nonlinear relationship among three influence factors and large scale gap thickness value is analyzed. The neural network model optimized by particle swarm algorithm is established for the above four variables and gap thickness value. The calculation results show that there is a good mapping model between the four variables and large scale gap thickness value; the predicted values are in good agreement with the experimental results, and the relative error is within 10%. The predicted value of the particle sarwm neural network can provide reference for the large-scale gap test of RDX-based composite explosive.

Key words: ordnance science and technology, composite explosive, shock sensitivity, large-scale gap test, neural network

中图分类号: