[1] 张瀚起. 基于二级行星滚柱丝杆的起竖机构电动缸设计及传动误差分析[D]. 哈尔滨:哈尔滨工业大学, 2019. ZHANG H Q. Design of electric cylinder of vertical mechanism based on two-stage planetary roller screw and ansys of transmission error[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese) [2] 吴向阳. 车载大型导弹发射装置电驱动快速垂直起竖技术研究[D]. 北京:北京理工大学, 2015. WU X Y. Study on electric vertical erection for large missile launcher on board[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese) [3] 刘毓希,高钦和,陈志翔,等. 大型导弹电驱动起竖过程中PMSM反馈线性化控制[J]. 电光与控制, 2017, 24(4): 67-70. LIU Y X, GAO Q H, CHEN Z X, et al. Feedback linearization control of pmsm in electric erecting of large missiles[J]. Electronics Optics & Control, 2017, 24(4): 67-70. (in Chinese) [4] 孙通. 基于燃气—液压混合驱动的瞬时爆发型起竖系统研究[D]. 杭州:浙江大学, 2016. SUN T.Research on the prompt explosion erecting system with large inertia based on hybrid drive of gas and hydraulics[D]. Hangzhou: Zhejiang University, 2016. (in Chinese) [5] 任玉亮,高钦和,田红宁. 流量可调燃气发生器在导弹起竖装置上的应用研究[J]. 推进技术, 2021, 42(2): 249-257. REN Y L, GAO Q H, TIAN H N. Application of flow adjustable gas generator on missile erection device [J]. Journal of Propulsion Technology, 2021, 42(2): 249-257. (in Chinese) [6] 任玉亮,高钦和,周伟,等. 燃气挤压器式辅助动力源起竖装置建模及性能[J]. 北京理工大学学报, 2020, 40(9): 915-923. REN Y L, GAO Q H, ZHOU W, et al. Theoretical modeling and performance study on erection device with gas-squeezer type auxiliary power source[J]. Transactions of Beijing Institute of Technology, 2020, 40(9): 915-923. (in Chinese) [7] 任玉亮,高钦和,田红宁. 燃气挤压器式动力源快速起竖装置设计优化与分析[J]. 振动与冲击, 2020, 39(24): 83-90. REN Y L, GAO Q H, TIAN H N. Optimization design and analysis of a rapid erection device based on gas-squeezer type power source[J]. Journal of Vibration and Shock, 2020, 39(24): 83-90. (in Chinese) [8] 沈浩. 起竖系统快速驱动技术与控制策略研究[D]. 北京:北京交通大学, 2020. SHEN H. Study of rapid drive technology and control strategy of vertical system[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese) [9] 张春峰. 基于蓄能器式辅助动力源的快速起竖系统研究[D]. 杭州:浙江大学, 2017. ZHANG C F. Research on fast erection system based on accumulator type auxiliary power source[D]. Hangzhou: Zhejiang University, 2017. (in Chinese) [10] 冯江涛,高钦和,管文良,等. 气体与液体混合驱动导弹快速起竖系统研究[J]. 兵工学报, 2017, 38(7): 1348-1357. FENG J T, GAO Q H, GUAN W L, et al. Research on rapid missile erection system based on gas-hydraulic hybrid drive[J]. Acta Armamentarii, 2017, 38(7): 1348-1357. (in Chinese) [11] 孙船斌,马大为,朱忠领. 基于碰撞的全行程液压起竖油缸振动性能研究[J]. 兵工学报, 2015, 36(4): 681-686. SUN C B, MA D W, ZHU Z L. Vibration performance of hydraulice erecting cylinder in collision at full stroke[J]. Acta Armamentarii, 2015, 36(4): 681-686. (in Chinese) [12] 王增全,巩军亮,张涛华,等. 多级液压缸换级缓冲仿真方法研究[J]. 导弹与航天运载技术, 2020(2): 83-86. WANG Z Q, GONG J L, ZHANG T H, et al. Research of simulation method about the throttle cushion technique with multi-stage cylinder[J]. Missiles and Space Vehicles, 2020(2): 83-86. (in Chinese) [13] CHEN X, CHEN F, ZHOU J, et al. Cushioning structure optimization of excavator arm cylinder [J]. Automation in Construction, 2015, 53: 120-130. [14] RAZUS D, MOVILEANU C, BRINZEA V, et al. Explosion pressures of hydrocarbon-air mixtures in closed vessels [J]. Journal of Hazardous Materials, 2006, 135(1-3): 58-65. [15] 孟利军,郭云鹤,凡永华. 大型导弹起竖机构三铰点配置优化技术研究[J]. 弹箭与制导学报, 2019, 39(5): 85-88. MENG L J, GUO Y H, FAN Y H. Research on optimization of three-hinge configuration for large-sized missile erecting equipment[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2019, 39(5): 85-88. (in Chinese) [16] 高钦和,马长林. 液压系统动态特性建模仿真技术及应用[M]. 北京: 电子工业出版社, 2013. GAO Q H, MA C L. Modeling and simulation technology of hydraulic system dynamic characteristic and its application[M]. Beijing: Publishing House of Electronics Industry,2013.(in Chinese) [17] 冯江涛,高钦和,管文良,等. 多级液压缸建模及级间缓冲研究[J]. 兵工学报, 2016, 37(12): 2268-2276. FENG J T, GAO Q H, GUAN W L, et al. Modeling of telescopic hydraulic cylinder and research on inter-stage buffer[J]. Acta Armamentarii, 2016, 37(12): 2268-2276. (in Chinese) [18] IANKARANI H M,NIKRAVESH P E. Continuous contact force models for impact analysis in multi-body systems[J]. Nonlinear Dynamics, 1994, 5(2): 193-207. [19] 周文平,杨彬.多级液压缸级间缓冲性能数值模拟[J].机床与液压,2021,49(12):171-174. ZHOU W P, YANG B. Numerical analysis for inter-stage cushioning characteristics of telescopic hydraulic cylinder [J]. Machine Tool and Hydraulics,2021, 49(12):171-174. (in Chinese) [20] 范超超. 一种新型液压缸缓冲装置的缓冲过程研究[D].兰州:兰州理工大学, 2018. FAN C C.Study on the buffering process of a new hydraulic cylinder cushioning device [D]. Lanzhou: Lanzhou University of Technology, 2018. (in Chinese)
|