欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2012, Vol. 33 ›› Issue (11): 1393-1403.doi: 10.3969/j.issn.1000-1093.2012.11.019

• 研究简报 • 上一篇    下一篇

基于改进粒子群优化算法的网络化仿真任务共同体服务选择

孙黎阳1,2, 林剑柠2, 毛少杰2, 刘中1   

  1. (1.南京理工大学 电子工程与光电技术学院, 江苏 南京 210094;2.中国电子科技集团公司第28研究所 信息系统工程重点实验室, 江苏 南京 210007)
  • 收稿日期:2012-02-17 修回日期:2012-02-17 上线日期:2014-01-10
  • 作者简介:孙黎阳(1985—), 男, 博士研究生

Service Selection of Network Simulation Task Community Based on Improved Particle Swarm Optimization Algorithm

SUN Li-yang1,2, LIN Jian-ning2, MAO Shao-jie2, LIU Zhong1   

  1. (1.School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China;2.Information System Engineering Laboratory, China Electronic Science and Technology Group, Nanjing 210007,Jiangsu,China)
  • Received:2012-02-17 Revised:2012-02-17 Online:2014-01-10

摘要: 作为网络化仿真中新的应用需求,如何动态地把散布在网络上各种服务整合起来以形成新的、满足不同用户需求的仿真任务共同体(STC)成为了当前研究热点。提出了一种基于粒子群优化(PSO)算法的仿真服务选择方法,针对传统PSO易陷入局部最优和收敛速度慢等不足,设计了一种惯性权重动态变化策略和一种可选的变异操作方法。该算法不仅能提高服务选择收敛速度,还能避免算法陷入局部最优。通过实验,采用典型函数进行了测试,并详细介绍了算法在STC服务选择上的实际运用,说明了算法的可行性和有效性。

关键词: 计算机应用, 网络化仿真, 任务共同体, 服务选择, 粒子群优化算法

Abstract: As one of new application requirements in network simulation, to dynamically integrate the distributed various services in network to form a new simulation task community (STC) which meets the needs of different users has become current research focus. This paper presents a simulation service selection method based on the particle swarm optimization. The traditional particle swarm algorithm has some shortcomings that may easily fall into local optima and have slow convergence rate. We design a dynamic inertia weight strategy and a selectable method of mutation. The algorithm can improve the convergence speed not only, but also avoid falling into local optimum. Finally, some typical functions are chosen to test the algorithm. And the results show that the algorithm can select services feasibly and effectively for STC.

Key words: computer application, network simulation, task community, service selection, particle swarm optimization algorithm

中图分类号: