欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2012, Vol. 33 ›› Issue (12): 1510-1515.doi: 10.3969/j.issn.1000-1093.2012.12.017

• 论文 • 上一篇    下一篇

基于不确定信息的无人机攻防博弈策略研究

陈侠, 刘敏, 胡永新   

  1. (沈阳航空航天大学 自动化学院, 辽宁 沈阳 110136)
  • 收稿日期:2012-07-13 修回日期:2012-07-13 上线日期:2014-01-09
  • 作者简介:陈侠(1962—)女,教授硕士生导师
  • 基金资助:
    国家自然科学基金项目(61074159);辽宁省自然科学基金项目(20092053)

Study on UAV Offensive/Defensive Game Strategy Based on Uncertain Information

CHEN Xia, LIU Min, HU Yong-xin   

  1. (School of Automation, Shenyang Aerospace University, Shenyang 110136, Liaoning, China)
  • Received:2012-07-13 Revised:2012-07-13 Online:2014-01-09

摘要: 通过分析实际战场中目标价值和毁伤概率信息的不确定性,提出了不确定信息条件下需要解决的无人机(UAV)攻防博弈问题。以敌我双方发射导弹的价值信息为依据,建立基于不确定信息的多UAV攻防对抗的支付函数,构建攻防双方博弈支付矩阵。将粒子群算法和区间数多属性方案排序方法相结合,给出基于不确定信息下博弈纳什均衡求解方法,为不确定环境下UAV攻防博弈实现最优策略提供了新方法。最后

关键词: 运筹学, 无人机, 纳什均衡, 不确定信息, 区间可能度

Abstract: The offensive/defensive problem of unmanned aerial vehicle (UAV) in an uncertain environment was presented by analyzing the uncertain information of target value and damage probability. An offensive/defensive payoff function of UAV in the case of uncertain information was established based on the information value of friend and enemy’s missiles, and the offensive/defensive game payoff matrix was built. The Nash equilibrium of the game was obtained by combining the particle swarm optimization algorithm and the interval number multiple attribute ranking method in the case of uncertain information. A new method for UAV offensive/defensive game to achieve optimal strategy was proposed. Finally the feasibility and effectiveness of the method was verified by simulation.

中图分类号: