[1] 钱伟长.穿甲力学[M].北京:国防エ业出版社,1984: 3-6. QlAN Wei-chang. Perforation mechanics [M]. Beijing: National Defence industry Press, 1984: 3 — 6. (in Chinese) [2] Holmquist T J, Templeton D W, Bishnoi K D. Constitutive mod?eling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [ J ]. International Journal of Impact Engineering, 2001,25: 211 - 231. [3] 张晓晴.陶瓷/金属复合靶板受变形弹体撞击问题的研究[D]. 人原:太原理工大学,2003. ZHANG Xiao-qing. Studies on the dynamic behaviour of ceramic/ metal armour plates under deformaDle projectile impact [ D]. Taiyuan: laiyuan University of Technology, 2003. (in Chinese) [4] 张晓晴,姚小虎,宁建国,等.Al2O3陶瓷材料应变率相关的动 态本构关系研究[J].爆炸与冲击,2004,24(3): 226-232. ZHANG Xiao-qing, YAO Xiao-hu, NING Jian-guo,et al. A study on the strain-rate dependent dynamic constitutive equation of Al2O3 ceramics [ J ]. Explosion and Shock Waves, 2004, 24(3) : 226 — 232. (in Chinese) [5] Rajendran A M. Modeling the impact behavior of AD85 ceramic under multiaxial loading [J]. International Journal of Impact En?gineering, 1994, 15(6): 749-768. [6] Rajendran A M,Grove D J. Modeling the shock response of sili?con carbide, boron carbide and titanium diboride [J]. Internation?al Journal of Impact Engineering, 1996,18(6) : 611 — 631 ? [7] Addessio F L, Johnson J N. A constitutive model for the dynamic response of brittle materials [ J ]. Journal of Applied Physics, 1990,67:3275-3286. [8] Curran D R,Seaman L,Cooper T, et al. Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets [j]. Inter?national Journal of Impact Engineering, 1993,13:53 - 83. [9] Shockey D A, Marchand A H, Skaggs S R, et al. Failure phe?nomenology of confined, ceramic targets and impacting rods [j J. International Journal of Impact Engineering, 1990, 9(3): 2o3 — 275. [10] Espinosa H D. On the dynamic shear resistance of ceramic com?posites and its dependence on applied multiaxial deformation [J].International Journal of Solids and Structures, 199D, 32 (21): 3105-3128. [11] Rajendran A M. Critical measurements for validation of constitu?tive equations under shock and impact loading conditions [ J ]. Optics and Lasers in Engineering, 2003,40(4) : 249 - 262. [12] Field J E, Proud W G, Walley S M, et al. Review of experi?mental techniques for high rate deformation and shock studies [J ]. International Journal of Impact Engineering, 2004,30: 725-755. [13] Grady D E. Shock wave compression of brittle solids [J] ? Me?chanics of Materials, 1998,29(3) : 181 — 203. [14] Rosenberg Z, Yeshurun Y. Determination of the dynamic re?sponse of AD-85 Alumina with in-material Manganin gauges [J]. Journal of Applied Physics, 1986,58: 3077 - 3080. [15] Rosenberg Z. Dynamic uniaxial stress experiments on alumina with in-material manganin gauges [ J ]. Journal of Applied Physics, 1985, 57: 5087-5088. [16] Cook W H. Compressive damage and fracture modeling of ce?ramic subjected to high-velocity impact [D]. US: University of Florida, 1991. [17] 黄良钊,张安平.Al2O3陶瓷的动态力学性能研究[J].中国 陶瓷,1999,35(1):13-15. HUANG Liang-zhao, ZHANG An-pin. A study of dynamic me- cnanical properties on AI2O3 ceramics [ J ] . Cliina Ceramics, 1999, 35(1): 13-15. (in Chinese) [18] 张晓晴,宁建国,赵隆茂,等.Al2O3陶瓷动态力学性能的实验 研究[J].北京理工大学学报,2004,24(2): 178-181. ZHANG Xiao-qin, NING Jian-Guo, ZHAO Long-mao, et al. Experimental study on dynamic mechanical properties of Al2O3 ceramics [J]. Transactions of Beijing Institute of Technology, 2004,24(2) : 178 — 181. (in Chinese) [19] Marom H,Sherman D, Rosenberg Z. Decay of elastic waves in alumina [ J]. Journal of Applied Physics, 2000,88: 5666 — 5670. [20] 王礼立.应カ波基础[M].北京:国防エ业出版社,1985: 149-151. WANG Li-l1. Foundation of stress waves [M].Beijing: Nation?al Defence Industry Press, 1985: 149 — 151. (in Chinese) [21] Rosenberg Z. On the relation between the hugoniot elastic limit and the yield strength of brittle materials [j] . Journal of Applied Physics, 1993, 74:752-753. [22] Yaziv D. Shock fracture and recompaction of ceramics[D]. US: University of Dayton, 1985. [23] Rosenberg Z, Yeshurun Y. The relation between ballistic effi?ciency and compressive strength of ceramic tiles [ J ]. Interna?tional Journal of Impact Engineering, 1988,7:357 — 362. [24] Gust W H,Royce E B. Dynamic yield strengths of B4C,BeO and Al2O3 ceramics [J] ? Journal of Applied Physics, 1971, 42: 276-295. [25] Rasorenov S V,Kanel G I, Fortov V E, et al. The fracture of glass under mgh-pressure impulsive loading [J]. High Press Re?search, 1991,6:225 - 232. [26] Kanel G I,Molodets A M, Dremin A N. Investigation of singu?larities of glass strain under intense compression waves [ J ]. Combustion, Explosion, and Shock Waves, 1977,13:772 - 777. [27] Cazamias J U. Characterizing the dynamic strength of materials for ballistic applications [D]. US: The University 0f Texas at Austin, 2000. [28] Kozhushko A A, Orphal D L, Sinani A B, et al. Possible detec?tion of failure wave velocity using hypervelocity penetration ex?periments [J ]. International journal of Impact Engineering, 1999,23(1):467-475. [29] 李平,李大红,宁建国,等.冲击载荷下Al2O3陶瓷的动态响 应[J].高压物理学报,2002,16(1): 22-28. LI Ping, Li Da-hong, NING Jian-guo, et al. Dynamic response of polycrystallme alumina under shock loading [J] ? Chinese Jour?nal of High Pressure Physics, 2002,16(1) : 22 — 28. (in Chi?nese) [30] 李平.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D]. 北京:北京理工大学,2002. LI Ping. Dynamic response of ceramic and mechanism against long rod penetrators [D]. Beijing: Beijing Institute of Technolo?gy, 2002. (in Chinese) [31] Westerling L, Lundberg P, Lundberg B. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities [ J ]. International Journal of Impact Engi?neering, 2001, 25(7): 703-714. [32] Camancho G T,Ortiz M. Lx>mputationai modeling of impact damage in brittle materials [J]. International Journal of Solids and Structures, 1996, 33: 2899 — 2938. [33] Camacno G T, Ortiz M. Adaptive lagrangian modeling of ballis?tic penetration of metallic targets [J]? Computer Methods in Ap?plied Mechanics & Engineering, 1997,142: 269 — 301. [34] Espinosa H D, Zavattieri P D,Emore G L. Adaptive FEM com?putation of geometric and material nonlinearities with application to brittle failure [J] ? Mechanics of Materials 1998, 29(3) : 275 -305. [35] Johnson G R, Stryk R A, Beissel S R. SPH for high velocity impact computations [ J]. Computer Methods in Applied Me?chanics & Engineering, 1996,139(1): 347-373. [36] 张刚明,王肖钧,王元博,等.高速碰撞数值计箅中的光滑 粒子法[J].计算物理,2003,20(5) : 447 - 454. ZHANG Gang-ming, WANG Xiao-jun, WANG Yuan-bo, et al. Smoothed particle hydrodynamics method to numerical simulation of hyper velocity impact [ J ]. Chinese Journal of Computational Physics, 2003, 20(5): 447-454. (in Chinese) [37] Lee M, Yoo Y H. Analysis of ceramic/metal armour systems [j] . International Journal of Impact Engineering, 2001,25: 819-829. [38] Randles P W, Libersky L D. Smoothed particle hydrodynamics: some recent improvements and applications [ J ]. computer Methods in Applied Mechanics and Engineering, 1996,139:375 -408. [39] Attaway S W,Heinstein M W, Swegle J W. Coupling of smooth particle hydrodynamics with the finite element method [j] . Nuclear Engineering and Design, 1994,150 : 199 — 205. [40] Johnson G R. Linking of lagrangian particle methods to standard finite element methods for high velocity impact computations [J ]. Nuclear Engineering and Design, 1994,150 : 265 - 274. [41] Johnson G R,Beissel S R. Normalised smoothing functions for SPH impact computations [J ]. International Journal of Numeri?cal Methods in Engineering, 1996, 39 :2725 — 41. [42] Johnson G R, Beissel S R, Stryk R A. An improved generalised particle algorithm that includes boundaries and interfaces [ J]. International Journal 01 Numerical Methods in Engineering, 2002,53:875-904. |